Wellenoptik und Beugung

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=4}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Betrachte Ausbreitung elektromagnetischer Wellen bei gegebenen lokalisierten Quellen

ρ(r¯,t) und j¯(r¯,t)

und bei vorgegebenen Leitern

Lα

im Vakuum:


Ziel

ist die Berechnung des Wellenfeldes im Außenraum V

Anwendung: Radiowellen

λ=1104

m Radar Optik

λ=400800nm

→ Beugung

Rückführung auf Randwertaufgabe

Lösung der inhomogenen Wellengleichungen in Lorentzeichung (Potenzialgleichungen) (vergleiche dazu 1.6 in der Elektrostatik)

#Φ(r¯,t)=ρε0#A¯(r¯,t)=μ0j¯

Zu vorgegebenen Ladungen und Strömen. Gleichzeitig haben wir Randbedingungen auf

Lα

und schließlich die Kausalitätsbedingung (Ausstrahlungsbedingung) → Retardierung, § 4.2

Annahme:

ρ(r¯,t)=ρ(r¯)eiωtj¯(r¯,t)=j¯(r¯)eiωt

Dies sollte wegen Fourier- Zerlegung bei periodischer Erregung beliebiger Art grundsätzlich möglich sein.

Φ(r¯,t)=Φ(r¯)eiωtA¯(r¯,t)=A¯(r¯)eiωt

eingesetzt in die Wellengleichung

#Φ(r¯,t)=ρε0=(Δ1c22t2)Φ(r¯,t)(Δ+k2)Φ(r¯)=ρ(r¯)ε0k:=ωc

Mit der Greenschen Funktion der Wellengleichung

#Φ(r¯,t)=ρε0
#G(r¯r¯´,tt´)=δ(r¯r¯´)δ(tt´)

Haben wir formal sofort die allgemeine Lösung:

Φ(r¯,t)=d3r´tdt´ρ(r¯´,t´)ε0G(r¯r¯´,tt´)=d3r´tdt´ρ(r¯´)ε0eiωt´G(r¯r¯´,tt´)tt´:=τtdt´eiωt´G(r¯r¯´,tt´)=tdt´eiωt´G(r¯r¯´,τ)=[0dτeiωτG(r¯r¯´,τ)]eiωt:=G~(r¯r¯´)eiωt0dτeiωτG(r¯r¯´,τ):=G~(r¯r¯´)

Somit kann die periodische Zeitabhängigkeit absepariert werden:

Φ(r¯)=d3r´G~(r¯r¯´)ρ(r¯´)ε0mit(Δ+k2)G~(r¯r¯´)=δ(r¯r¯´)

Problem: Die Randbedingungen für

Φ(r¯),A¯

sind im stationären Fall nicht bekannt, sondern müssen selbstkonsistent bestimmt werden. Man kann das Problem jedoch mit Hilfe des Greenschen Satzes umformulieren:

Skalare Kirchhoff- Identität

(eine notwendige, nicht hinreichende Bedingung für Lösung):

Skalar: Wir beschreiben keine Polarisationseffekte!!! Alle Polarisationseffekte sind vernachlässigt. Das hat man unter dem Begriff Skalar an dieser Stelle zu verstehen!

Weiter: Greenscher Satz:

Vdf¯(ϕΨΨϕ)=Vd3r(ϕΔΨΨΔϕ)

Setze:

Ψ(r¯)=G~(r¯r¯´)ϕ(r¯)=Φ(r¯)

Dabei sei das Potenzial als Lösung angenommen:

Vdf¯(Φ(r¯)G~(r¯r¯´)G~(r¯r¯´)Φ(r¯))=Vd3r(Φ(r¯)ΔG~(r¯r¯´)G~(r¯r¯´)ΔΦ(r¯))ΔG~(r¯r¯´)=δ(r¯r¯´)k2G~(r¯r¯´)ΔΦ(r¯)=ρε0k2Φ(r¯)Vd3r(Φ(r¯)ΔG~(r¯r¯´)G~(r¯r¯´)ΔΦ(r¯))=Φ(r¯´)Vdf¯(G~(r¯r¯´)Φ(r¯)Φ(r¯)G~(r¯r¯´))=Φ(r¯´)

Also:

Φ(r¯´)=Vdf¯(G~(r¯r¯´)Φ(r¯)Φ(r¯)G~(r¯r¯´))r¯´V

Dabei ist

Φ(r¯´)

im inneren von V durch

Φ und Φ

auf dem Rand festgelegt, falls die Greensfunktion

G~(r¯r¯´)

bekannt ist

Freier Raum: Greensfunktion des unendlichen Raumes:

Randbedingung

limrG~(r¯r¯´)=0
  • Retardierte Potenziale (Vergl. § 4.2):
G(r¯r¯´,τ)={14π|r¯r¯´|δ(τ|r¯r¯´|c)τ>00τ<0

Somit:

G~(r¯r¯´)=0dτG(r¯r¯´,τ)eiωτ=eik|r¯r¯´|4π|r¯r¯´|k:=ωc

Es folgt für das Potenzial:

Φ(r¯,t)=d3r´G~(r¯r¯´)eiωtρ(r¯´)ε0=d3r´eik|r¯r¯´|4π|r¯r¯´|eiωtρ(r¯´)ε0Φ(r¯,t)=d3r´ei(k|r¯r¯´|ωt)4π|r¯r¯´|ρ(r¯´)ε0

beschreibt eine Überlagerung auslaufender Kugelwellen→ Lösung als Entwicklung in Kugelwellen. (Ausstrahlbedingung, Konsequenz der Kausalität).

Mit

R¯:=r¯r¯´

lautet die Kirchhoff- Identität:

Φ(r¯´,t)=14πVdf¯R[eikRRrΦ(r¯)Φ(r¯)reikRR]reikRR=eikRR(ik1R)r¯r¯´|r¯r¯´|

Dazu eine Grafik:


Mittels

df¯r¯r¯´|r¯r¯´|=dfcosϑ

und über Beschränkung auf Fernzone von

V,
also R >> 1/k gilt:


Φ(r¯´,t)=14πVdfR[nΦ(r¯)ikΦ(r¯)cosϑ]eikRR

Mit der richtungsabhängigen Amplitude

[nΦ(r¯)ikΦ(r¯)cosϑ]

und der Kugelwelle

eikRR.

Beides zusammen ergeben sogenannte Sekundärwellen.

Insgesamt ist dies die exakte (mathematische) Formulierung des Huygensschen Prinzips (jeder Punkt an der Oberfläche des Hindernisses ist Ausgangspunkt einer Kugelwelle). deren phasengerechte Überlagerung ergibt dann das Wellenfeld in r´

b) Greensfunktion zu Randbedingungen

G~(r¯r¯´)|r¯Vr¯´V=0
Φ(r¯´)=Vdf¯Φ(r¯)rG~(r¯r¯´)

Die neue Greensfunktion unterscheidet sich von der alten nur durch eine additive Lösung g der homogenen Wellengleichung:

G~(R¯)=g(R¯)+14πeikRR(Δ+k2)g=0

Mit Randbedingung

g|V=14πeikRR|V

Beispiel für die Konstruktion von

G~(R¯)

Ebener Schirm:

Spiegelladungsmethode:

Hinter dem Schirm wird die Halbkugel im UNENDLICHEN geschlossen.

Hinter dem ebenen Schirm wenden wir die Spiegelladungsmethode an:

G~(r¯r¯´)=14π(eik|r¯r¯´||r¯r¯´|eik|r¯r¯´´||r¯r¯´´|)rG~(r¯r¯´)=14π(reik|r¯r¯´||r¯r¯´|reik|r¯r¯´´||r¯r¯´´|):=14π(reikRRreikR´´R´´)

Dieser Gradient wurde einige Seiten vorher bereits gelöst:

rG~(r¯r¯´)=14π(reik|r¯r¯´||r¯r¯´|reik|r¯r¯´´||r¯r¯´´|):=14π(reikRRreikR´´R´´)=14π(eikRR(ik1R)r¯r¯´|r¯r¯´|eikR´´R´´(ik1R´´)r¯r¯´´|r¯r¯´´|)

Mit

R=R´´df¯r¯r¯´|r¯r¯´|=df¯r¯r¯´´|r¯r¯´´|=+dfcosϑdf¯rG~=df12πeikRR(ik1R)cosϑ

Für

λ<<R

(Fernzone):


Φ(r¯´)=Vdf¯Φ(r¯)rG~(r¯r¯´)=iλFdfΦ(r¯)eik|r¯r¯´||r¯r¯´|cosϑ

Zur Konstruktion der Lösung müssen die Randwerte

Φ(r¯)|F

erraten werden.

Kirchhoffsche Näherung

Beugung an Blenden B in einem ebenen Schirm:

Annahme:

Φ(r¯)|S=0

Das Potenzial verschwindet auf dem Schirm (leitender Schirm)

Φ(r¯)|B=eikRQRQ

freie einfallende Welle → Kugelwellen in der Blende

Ro rage dabei zum Schwerpunkt der Blende

Φ(r¯´)=iλBdfeik|R+RQ|RRQcosϑcosϑconst.

Der Winkel ist näherungsweise konstant für kleine Blenden:

λ<<d
R¯=r¯r¯´R¯Q=r¯r¯Qdf=d2r

Somit:

Φ(r¯´)=iλcosϑ0R0R0QBdfeik|R+RQ|cosϑconst.

im schnell oszillierenden Exponenten darf man R und RQ nicht so ohne weiteres durch Ro / RQo ersetzen!

  • typisches Näherungsverfahren in Fernfeldoptik

Grenzfälle

  1. Fraunhofersche Beugung (Fernzone:
  2. λ<<d<<R
  3. )

Setze

R¯=R¯0+s¯
R2R02+2R¯0s¯
RR0+α¯s¯α¯:=R¯0R0

Analog:

RQR0Q+α¯0s¯α¯0:=R¯0QR0Q
Φ(r¯´)iλeik(R0+R0Q)cosϑ0R0R0QBd2seik(α¯+α¯0)s¯

Fresnelsche Beugung (Mittelzone:

λ<<Rd

hier:

R2=R02+2R¯0s¯+s2

nicht genähert!!

Beispiel: Fraunhofersche Beugung am Spalt (eindimensional):


Bei senkrechtem Einfall gilt:

α¯0s¯=0
Φ(r¯´)=Cd/2d/2ds1eikαs1α:=sinϑ0α¯s¯=s1sinϑ0Φ(r¯´)=Cikα(eikαd2eikαd2)Φ(r¯´)=Cdsin(kαd2)kαd2

Die Spaltfunktion, Fouriertransformierte der Rechteckfunktion (Blende)


Wir finden Beugungsminima bei den Nullstellen des Sinus (Außer in der Mitte), also

sinϑ0=nλd

ebenso (als ÜBUNG!!!) können dann Beugung am Gitter und an kreisförmigen Blenden berechnet werden.

Einwurf: 1. Der holografische Prozess

    1. Aufzeichnung und Rekonstruktion

Lichtintensität einer Lichtwelle:

I(x,y)=|O(x,y)|2=O(x,y)O*(x,y)
  • Phaseninformationen gehen verloren
  • Idee: Phaseninfo durch Interferenz aufzeichnen
  • Lösung mittels eines Zweistufenprozesses: Aufzeichnung und Rekonstruktion
  • Kohärenz erforderlich
  • monochromatisches Licht
  • unpolarisiertes Licht

1. Schritt: Die Aufzeichnungsphase

  • Problem: Speichern komplexer Funktionen in einem reellen Medium
  • Überlagerung der Objektwelle
O(x,y)=|O(x,y)|exp(iφO(x,y))
  • Mit einer Referenzwelle
R(x,y)=|R(x,y)|exp(iφR(x,y))
  • Auch in diesem Fall werden nur Intensitäten gespeichert. Doch diese sind nun:
I(x,y)=|O(x,y)+R(x,y)|2=|O|2+|R|2+OR*+O*R
I(x,y)=|O|2+|R|2+2ROcos[φR(x,y)φO(x,y)]
  • Diese Intensitätsverteilung kann verstanden werden als " Hologrammfunktion" oder "Aperturefunktion"
  • Planare Wellen: Fraunhofer Hologramme
  • Divergierende Wellen: Fresnelhologramme
  • Im obigen Bild dargestellt: Trägerfrequenzholografie
  • Eigentliche Holografie: ohne Trägerfrequenz: Referenzstrahl, in den auch das Objekt gestellt wird.
  • Dabei überlagern sich jedoch mehrere Ordnungen.
  • Generell: verschiedenste Aufzeichnungstechniken:
  • Trägerfrequenzholografie (wie oben)
  • Denisyukhologramm

2. Schritt: Rekonstruktionsphase

  • Gleiche Wellenlänge wie bei Aufzeichnung rekonstruiert das Objekt
  • Ansonsten: Verzerrung
  • Beugung durch Hologrammstrukturen vergleichbar mit Gitter
  • Motivation: Gittergeister an Gitterspektrographen
  • Das Gitter kann als leeres Hologramm verstanden werden (Überlagerung zweier ebener Wellen)
  • Die Hologrammfunktion / Aperturefunktion (bei optischen Hologrammen eine Intensitätsfunktion → reell) moduliert dabei die einfallende Rekonstruktionswelle:


O´=RI(x,y)=R(|O|2+|R|2)+O|R|2+RRO*
  • Zu beachten: komplexe Funktionen

Fresnel- und Fourier- Hologramme

  • Wesentlich für Fourier- Hologramme: Aufzeichnung mittels ebener Wellen
  • Linse
  • Objekt in weiter Entfernung
  • Wesentlich für Fresnelhologramme: Die Objektwelle ist eine Kugelwelle. Das Objekt muss sich also in der Nähe der Hologrammebene befinden.
  • Fouriernäherung des Beugungsintegrals
  • Fresnel- Näherung des Beugungsintegrals
    1. Grundlagen der Beugung
  • Das Beugungsintegral beschreibt die Lichterregung in der Beobachtungsebene.
  • Keine Berücksichtigung der Polarisation
  • Voraussetzung: kohärente Beleuchtung
  • Die einfallende Welle wird mit der Aperturefunktion A(x1, y1) (z.B. Amplitudentransparenz einer Blende oder Phasenaddition durch ein Phasenobjekt) multipliziert und dann über den gesamten Raum integriert.
  • Fällt das Licht durch ein Hologramm, so muss in die Gleichungen die entsprechende Funktion der Lichttransmission, die das Hologramm beschreibt, gesetzt werden (Hologramm-/ Aperturefunktion).
  • Ausgangspunkt:

Helmholtz- Gleichung

(2+k2)U(r¯)=0 mit U(r¯)=eik¯r¯o1ro1
  • lauter Kugelwellen in x1/y1
O(xo,yo)~A(x1,y1)U(r¯)dx1dy1
~1zeikrA(x1,y1)dx1dy1
  • Komposition des Objekts durch Interferenz aufgrund von Phasenunterschieden im Raum hinter der Blende

Reihenentwicklung des Abstandes als Näherung:

r=(xox1)2+(yoy1)2+z2
z[1+(xox1)2+(yoy1)22z2]

Fresnel- Näherung:

  • Die Hologrammfunktion / Aperturfunktion kodiert das Fresnelsche Beugungsbild
O(xo,yo)~eikzzA(x1,y1)eiπλz[(xox1)2+(yoy1)2]dx1dy1

Fraunhofer- Näherung:

  • Aufzeichnung allgemein mit Linse
  • Zur Aufzeichnung: ebene Welle erforderlich


  • Das Integral entspricht einer Fouriertransformation der Hologrammfunktion/ Aperturefunktion

Aufzeichnung:


1.3 Beispiele: Einfach- und Doppelspalt

Hintergrund

  • Laufstreckenunterschiede von kohärenten Lichtstrahlen bestimmen Interferenzerscheinungen

Fernfeldnäherungen/ Fouriernäherungen:

  • Für schmalen Doppelspalt gilt:
dφ(P)=kds=k(r2r1)ksinθa=2πsinθaλ
sinθa=mλ

als Maximabedingung

Sofort ersichtlich:

  • Variation des Spaltabstands variiert Phase
  • Variation der Spaltbreite variiert Amplitude
  • Breiter Spalt: Interferenz der Strahlen untereinander
  • 1. Strahl ↔ n/2 +1 , 2. Stahl ↔ N/2 + 2

à

sinθb=mλ

als Minimabedingung

Der Einfachspalt:

Amplitudenverteilung bei Einzelspalt:

O~sinc(k2bsinθ)

entspricht Feldverteilung des E-Feldes:

E~sinc(k2bsinθ)


I(θ)=Iosinc 2 (k2bsinθ)

2. Doppelspalt mit endlicher Spaltbreite/ Minimalgitter:


  • Lösung Gesamtproblem: Reihe von Beugungsintegralen

Amplitudenverteilung bei Einzelspalt:

E~sinc(k2bsinθ)
  • Entspricht den Beugungserscheinungen an einer Periode

Amplitudenverteilung bei mehreren schmalen Spalten/ Vielstrahlinterferenz:

E~{sin(Nka2sin(θ))sin(ka2sin(θ))}
I(θ)=Iosinc2(k2bsinθ){sin(Nka2sin(θ))sin(ka2sin(θ))}2
  • Der Abstand der Spalte ist immer größer als die Breite: a>b
  • Die Interferenzstreifen aus Spaltbreite modulieren mit niedriger Frequenz
  • Interferenzstreifen aus Spaltanzahl modulieren mit hoher Frequenz
  • Für schmale Spalte: Kammfunktion