Eichtransformation der Lagrangefunktion

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=3}} __SHOWFACTBOX__


Uneindeutigkeit der Lagrangefunktion[edit | edit source]

Die Lagarangefunktion wird duch die Lagrangegleichung nicht eindeutig festgelegt.

Betrachten wir beispielsweise ein geladenes Teilchen im elektrischen Feld:



e sei die Ladung

Bewegungsgleichung:



Die Lorentzkraft{{#set:Fachbegriff=Lorentzkraft|Index=Lorentzkraft}} ist typischerweise nicht konservativ

Die Darstellung des elektrischen und magnetischen Feldes erfolgt über die Potenziale:



Dabei ist Skalar und A ein Vektorpotenzial (MKSA- System)

Ziel: Suche eine Lagrangefunktion in der Art, dass


Die Bewegungsgleichung

ergeben.

Ansatz:



Probe:



Weiter:



Somit:



Somit erfüllt unser Ansatz die Bewegungsgleichungen

Eichtransformationen[edit | edit source]

Die Potenziale lassen sich umeichen mit Hilfe der Eichfunktion{{#set:Fachbegriff=Eichfunktion|Index=Eichfunktion}}

:



Durch Einsetzen sieht man schnell, dass sich die Felder nicht ändern:



Betrachten wir die Lagrangefunktion, so ergibt sich:



Einsetzen zeigt: L´ führt zu denselben Lagrangegleichungen wie L.


Die Eichtransformation

mit einer beliebigen Eichfunktion M (skalar) läßt die Lagrangegleichungen invariant.

{{#set:Definition=Eichtransformation|Index=Eichtransformation}}


Allgemein gilt:

Sei beliebig und


dann erfüllen die


das hamiltonsche Prinzip

Also:



Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art

mit

beliebig.

Beweis:

mit


Einzige Nebenbedingung:


darf nicht explizit von

abhängen.


Beispiel: eindimensionaler Oszi



Beispielhafte Eichfunktion:



Die Lagrangegleichungen lauten:


Es folgt als Bewegungsgleichung