Die Dirac Gleichung
65px|Kein GFDL | Der Artikel Die Dirac Gleichung basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 4) der Quantenmechanikvorlesung von Brandes. |
|}}
{{#set:Urheber=Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=4}} Kategorie:Quantenmechanik __SHOWFACTBOX__
LITERATUR: SKRIPT FREDENHAGEN
Die Klein-Gordon-GleichungKlein-Gordon-Gleichung{{#set:Fachbegriff=Klein-Gordon-Gleichung|Index=Klein-Gordon-Gleichung}}
lässt sich durch Wurzelziehen umschreiben in
Aus der Wurzel lässt sich durch Entwicklung die Schrödingergleichung zurückgewinnen mit dem Ruheenergie Zusatzterm mc². Allerdings stört die Quadratwurzel.
Dirac: Linearisierung als
Ansatz [1]
Für
soll
Vielleicht liefert
die Lösung.
erzeugen eine sogenannten Clifford-AlgebraClifford-Algebra{{#set:Fachbegriff=Clifford-Algebra|Index=Clifford-Algebra}} von 4x4 Matrizen
Zeige, dass es 4x4-Matritzen sind:
- haben nur die Eigenwerte
- Aus Spurfreiheit folgt, dass die Summe der Eigenwerte 0 ist. Also haben grade Dimension
- 2x2 Matrizen tun es nicht:
M P=Anzahl der Parameter in einer NxN-Matrix M komplex 2N² Komplex, hermitesch N²(Diagonale)+N²-N=N² wegen der Zusatzbedingung Für N=2 folgt p=3 reelle Parameter.
2x2 Matritzden M mit lassen sich als Linearkombinationen mit p=3 reellen Parametern mit der Basis der Pauli-MatrizenPauli-Matrizen{{#set:Fachbegriff=Pauli-Matrizen|Index=Pauli-Matrizen}}
darstellen, d.h,
(1.34)
Die Pauli-Matrizen sind 3 linear unabhängige, antikommutierende Spurlose Matrizen, für (1.32) bräuchte man also 4, deshalb kann (1.32) nicht mit 2x2-Matrizen erfüllt werden.
Die 4x4 Matrizen werden gewählt als (in 2x2-Blockdarstellung)
Es gilt (4x4 Einheitsmatrix). (CHECK 1.32)
Die Wellenfunktion Ψ in der Dirac-GleichungDirac-Gleichung{{#set:Fachbegriff=Dirac-Gleichung|Index=Dirac-Gleichung}} (ohne Elektromagnetische Felder)
sind 4-komponentige Spinoren