Quantentheoretischer Zugang

From testwiki
Jump to navigation Jump to search

Einteilchenzustände im Kasten

Betrachte Gase, also Teilchen im Kasten, auch möglich Mödell für Festkörper: Kastne mit Länge L und Energiedifferenz Δϵ V=L3 (Volumen) Die Dichte des Energienivieaus ist bestimmt durch die Länge L. H=p22m+VKasten(r) für unendlich hohe Wände Einteilchenfunktion φn(r)=2Lsin(nxπLx)2Lsin(nyπLy)2Lsin(nzπLz) mit n=(nx,ny,nz);ni=1,2,... und Energieeigenwerten εn=π22mL2(nx2+ny2+nz2) Diracschreibweise: Zustand nur durch Qantenzahlen chartisiert φn(r)=r|n|n(3-Quantenzahlen)

Großer Kasten, dichtliegende Zustände

in einem großen Kasten sollen die Randbeingungne nicht so wichtig sien, Modell für makroskopischen Körper, nehmen periodische Randbedingungen φn(x=0,y,z)=φn(x=L,y,z)xi periodisch angeordnete Kästen nebeneinander

Ansatz:

freie Teilchen im Kasten: eik.r


eik.r=eik.(r+L),L=(L,L,L)eik.r=1 w a¨ hlenki=(kx,ky,kz):ki=2πLmi,mi

Damit sind die Quantenzahlen k_i im großen (makroskopischen) Kasten festgelegt als: φk=1Veik.r,ki=2πLmi,mik.r=ikixi man kann mit den ebenen Wellen besser als mit den Sinusfunktionen rechen, weil: man oft Quantenzahlen bzw. Zuständer zählen mus (wie in der klassichen Statiski beim Würfel =6)

k's zu zählen ist oft leichter als n's z.B Zust a¨ nde... s... Failed to parse (syntax error): {\displaystyle {{\sum }_{\text{\vec{k}}\in \text{3-Dim Raum}}}=\sum\limits_{\text{k}}{\frac{{{\Delta }^{\text{3}}}k}{\underbrace{{{\Delta }^{\text{3}}}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int_{{}}^{{}}{{{d}^{\text{3}}}k}} Δk sind dicht ~ 1L Summe über die k-Quantenzahlen werden also so übersetzt