Quantentheoretischer Zugang
Einteilchenzustände im Kasten
Betrachte Gase, also Teilchen im Kasten, auch möglich Mödell für Festkörper: Kastne mit Länge L und Energiedifferenz Δϵ V=L3 (Volumen) Die Dichte des Energienivieaus ist bestimmt durch die Länge L. für unendlich hohe Wände Einteilchenfunktion mit und Energieeigenwerten Diracschreibweise: Zustand nur durch Qantenzahlen chartisiert (3-Quantenzahlen)
Großer Kasten, dichtliegende Zustände
in einem großen Kasten sollen die Randbeingungne nicht so wichtig sien, Modell für makroskopischen Körper, nehmen periodische Randbedingungen periodisch angeordnete Kästen nebeneinander
Ansatz:
Damit sind die Quantenzahlen k_i im großen (makroskopischen) Kasten festgelegt als: man kann mit den ebenen Wellen besser als mit den Sinusfunktionen rechen, weil: man oft Quantenzahlen bzw. Zuständer zählen mus (wie in der klassichen Statiski beim Würfel =6)
k's zu zählen ist oft leichter als n's z.B Failed to parse (syntax error): {\displaystyle {{\sum }_{\text{\vec{k}}\in \text{3-Dim Raum}}}=\sum\limits_{\text{k}}{\frac{{{\Delta }^{\text{3}}}k}{\underbrace{{{\Delta }^{\text{3}}}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int_{{}}^{{}}{{{d}^{\text{3}}}k}} sind dicht ~ Summe über die k-Quantenzahlen werden also so übersetzt