Poisson- Gleichung und Greensche Funktion

From testwiki
Revision as of 01:09, 29 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „ <noinclude>{{Scripthinweis|Elektrodynamik|1|3}}</noinclude> =Poisson- Gleichung und Greensche Funktion= <math>\bar{E}\left( {\bar{r}} \right)=-\nabla \Phi (\b…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search



{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=3}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Poisson- Gleichung und Greensche Funktion

E¯(r¯)=Φ(r¯) in E¯(r¯)=ρ(r¯)ε0 liefert:

ΔΦ(r¯)=ρ(r¯)ε0

Dies ist nicht anderes als die berühmte Poisson- Gleichung

Eine partielle DGL zur Berechnung des elektrischen Potenzials für eine vorgegebene Ladungsverteilung.

Die Eindeutigkeit kommt aus den Randbedingungen:

Entweder: 1) Φ(r¯)0 hinreichend rasch für r

oder 2) Φ(r¯) sei gegeben auf Flächen im Endlichen, Beispielsweise Leiteroberflächen

Lösung zu 1):

Φ(r¯)=14πε0R3d3r´ρ(r¯´)|r¯r¯´| für hinreichend rasch abfallendes ρ(r¯´)

Einsetzen in Poisson- Gleichung:

ΔΦ(r¯)=14πε0ΔrR3d3r´ρ(r¯´)|r¯r¯´|=14πε0R3d3r´Δrρ(r¯´)|r¯r¯´| , falls Integration und Differenziation vertauschbar, also über verschiedene Koordinaten ausgeführt wird.

Man definiere für ein festes r¯´ , dass s¯:=r¯r¯´r=s

Also:

Δr1|r¯r¯´|=S(S1s)=S1s2s¯s=1s3Ss¯s¯S1s3Ss¯=3Δr1|r¯r¯´|=1s3Ss¯s¯S1s3=3s3+1s3=0

Dies ist aber ein Widerspruch zu ΔΦ(r¯)=ρ(r¯)ε0

Grund ist , dass die Vertauschung von Δr und R3d3r´ sowie auch die obige Umformung nicht erlaubt ist für r¯=r¯´ , also s=0 ( Singularität!!)

Stattdessen für beliebige V:


Nun kann man Vdf¯r mit R3d3r´ vertauschen. Dies ist erlaubt, falls der Integrand von R3d3r´ nach der Vertauschung stetig ist !:

Vd3rΔΦ(r¯)=14πε0R3d3r´ρ(r¯´)Vdf¯r1|r¯r¯´|r1|r¯r¯´|=(r¯r¯´)|r¯r¯´|3

Somit:

Vd3rΔΦ(r¯)=14πε0R3d3r´ρ(r¯´)Vdf¯r1|r¯r¯´|=14πε0R3d3r´ρ(r¯´)Vdf¯r¯r¯´|r¯r¯´|3Vdf¯r¯r¯´|r¯r¯´|3=dΩ

aber:

Vdf¯r¯r¯´|r¯r¯´|3=dΩ=4π , falls r¯´V

Vdf¯r¯r¯´|r¯r¯´|3=dΩ=0 falls r¯´V

Somit:

Vd3rΔΦ(r¯)=14πε0R3d3r´ρ(r¯´)Vdf¯r1|r¯r¯´|=1ε0Vd3r´ρ(r¯´)

Mathematisch streng gilt im Distributionen- Sinn:

Δr1|r¯r¯´|=4πδ(r¯r¯´)

Mit Hilfe der delta- Distribution, die auf eine Testfunktion anzuwenden ist !

Greensche Funktion der Poisson- Gleichung

ΔΦ(r¯)=ρ(r¯´)ε0 Invertierung Φ(r¯)=G^ρ(r¯´)

Mit dem Greenschen Operator G^

Eine Fourier- Transformation von ΔΦ(r¯)=ρ(r¯´)ε0 liefert k2Φ~=ρ~ε0

Man kann schreiben:

Φ~=G^~ρ~G^~:=1ε0k2

Die einfache Fourier- Transformierte Form von Φ(r¯)=G^ρ(r¯´) , nur dass der Fourier- transformierte Greens- Operator angegeben werden kann.

Die Rücktransformation löst dann die Poiisson-gleichung:

Φ(r¯)=d3r´G^(r¯r¯´)ρ(r¯´)

Es gilt:

ΔrG^(r¯r¯´)=1ε0δ(r¯r¯´)

Das heißt, die Greensfunktion ist eine Lösung der Poissongleichung für eine Punktladung q=1 an r¯´

Insbesondere bei speziellen Randbedingungen

limr¯Φ(r¯)=0

ist die Greensfunktion dann:

G(r¯r¯´)=14πε01|r¯r¯´|

Denn

ΔrG=Δ14πε01|r¯r¯´|=1ε0δ(r¯r¯´)

Für eine beliebige Ladungsverteilung ρ ist also die Lösung der Poissongleichung

Φ(r¯)=14πε0ρ(r¯´)|r¯r¯´|d3r´=G(r¯r¯´)ρ(r¯´)d3r´

wobei die Identität insgesamt nur für die Randbedingungen limr¯Φ(r¯)=0 gilt, ansonsten ist G durch die andern Randbdingungen festgelegt.