Jump to navigation Jump to search

General

Display information for equation id:math.2671.28 on revision:2671

* Page found: Die Dirac Gleichung (eq math.2671.28)

(force rerendering)

Occurrences on the following pages:

Hash: d04bc345272edb638cca010e74a7be96

TeX (original user input):

{{\underline{\underline{\sigma }}}_{i}}^{2}=\underline{\underline{1}},\quad {{\underline{\underline{\sigma }}}_{i}}^{T}={{\underline{\underline{\sigma }}}_{i}},\quad Tr\left( {{{\underline{\underline{\sigma }}}}_{i}} \right)=0,\quad \left\{ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right\}:={{\underline{\underline{\sigma }}}_{i}}{{\underline{\underline{\sigma }}}_{j}}-{{\underline{\underline{\sigma }}}_{j}}{{\underline{\underline{\sigma }}}_{i}}=2{{\delta }_{ij}}\underline{\underline{1}}

TeX (checked):

{{\underline {\underline {\sigma }}}_{i}}^{2}={\underline {\underline {1}}},\quad {{\underline {\underline {\sigma }}}_{i}}^{T}={{\underline {\underline {\sigma }}}_{i}},\quad Tr\left({{\underline {\underline {\sigma }}}_{i}}\right)=0,\quad \left\{{{\underline {\underline {\sigma }}}_{i}},{{\underline {\underline {\sigma }}}_{j}}\right\}:={{\underline {\underline {\sigma }}}_{i}}{{\underline {\underline {\sigma }}}_{j}}-{{\underline {\underline {\sigma }}}_{j}}{{\underline {\underline {\sigma }}}_{i}}=2{{\delta }_{ij}}{\underline {\underline {1}}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.13 KB / 393 B) :

σ__i2=1__,σ__iT=σ__i,Tr(σ__i)=0,{σ__i,σ__j}:=σ__iσ__jσ__jσ__i=2δij1__
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msup><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mn>1</mn><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mo>,</mo><mspace width="1em"></mspace><msup><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>,</mo><mspace width="1em"></mspace><mi>T</mi><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi>:</mi><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mi>&#x03C3;</mi><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><munder><mn>1</mn><mo>_</mo></munder></mrow><mo>_</mo></munder></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Die Dirac Gleichung page

Identifiers

  • σ__i
  • 1__
  • σ__i
  • T
  • σ__i
  • T
  • r
  • σ__i
  • σ__i
  • σ__j
  • σ__i
  • σ__j
  • σ__j
  • σ__i
  • δij
  • 1__

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results