Jump to navigation Jump to search

General

Display information for equation id:math.2657.7 on revision:2657

* Page found: Klein Gordon und Relativität (eq math.2657.7)

(force rerendering)

Occurrences on the following pages:

Hash: ad3a7f6bbf33769fa981510c1c2d732e

TeX (original user input):

\begin{align}

& \underline{{{{{x}'}}^{2}}-{{c}^{2}}{{{{t}'}}^{2}}}=\left( \begin{matrix}

{{x}'} & c{t}'  \\

\end{matrix} \right)\left( \begin{matrix}

1 & 0  \\

0 & -1  \\

\end{matrix} \right)\left( \begin{align}

& {{x}'} \\

& c{t}' \\

\end{align} \right)={{\gamma }^{2}}\left( \begin{matrix}

x & ct  \\

\end{matrix} \right)\left( \begin{matrix}

1 & -\beta   \\

-\beta  & 1  \\

\end{matrix} \right)\left( \begin{matrix}

1 & 0  \\

0 & -1  \\

\end{matrix} \right)\left( \begin{matrix}

1 & -\beta   \\

-\beta  & 1  \\

\end{matrix} \right)\left( \begin{align}

& x \\

& ct \\

\end{align} \right) \\

& ={{\gamma }^{2}}\left( \begin{matrix}

x & ct  \\

\end{matrix} \right)\left( \begin{matrix}

1-{{\beta }^{2}} & 0  \\

0 & -1+{{\beta }^{2}}  \\

\end{matrix} \right)\left( \begin{align}

& x \\

& ct \\

\end{align} \right)=\underline{{{x}^{2}}-{{c}^{2}}{{t}^{2}}}

\end{align}

TeX (checked):

{\begin{aligned}&{\underline {{{{x}'}^{2}}-{{c}^{2}}{{{t}'}^{2}}}}=\left({\begin{matrix}{{x}'}&c{t}'\\\end{matrix}}\right)\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{aligned}&{{x}'}\\&c{t}'\\\end{aligned}}\right)={{\gamma }^{2}}\left({\begin{matrix}x&ct\\\end{matrix}}\right)\left({\begin{matrix}1&-\beta \\-\beta &1\\\end{matrix}}\right)\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{matrix}1&-\beta \\-\beta &1\\\end{matrix}}\right)\left({\begin{aligned}&x\\&ct\\\end{aligned}}\right)\\&={{\gamma }^{2}}\left({\begin{matrix}x&ct\\\end{matrix}}\right)\left({\begin{matrix}1-{{\beta }^{2}}&0\\0&-1+{{\beta }^{2}}\\\end{matrix}}\right)\left({\begin{aligned}&x\\&ct\\\end{aligned}}\right)={\underline {{{x}^{2}}-{{c}^{2}}{{t}^{2}}}}\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.893 KB / 527 B) :

x2c2t2_=(xct)(1001)(xct)=γ2(xct)(1ββ1)(1001)(1ββ1)(xct)=γ2(xct)(1β2001+β2)(xct)=x2c2t2_
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mo>_</mo></munder></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mtd><mtd><mi>c</mi><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>c</mi><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>x</mi></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mo>&#x2212;</mo><mi>&#x03B2;</mi></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>&#x03B2;</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mo>&#x2212;</mo><mi>&#x03B2;</mi></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>&#x03B2;</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>x</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>x</mi></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mn>1</mn><mo>+</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>x</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mo>_</mo></munder></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon und Relativität page

Identifiers

  • x
  • c
  • t
  • x
  • c
  • t
  • x
  • c
  • t
  • γ
  • x
  • c
  • t
  • β
  • β
  • β
  • β
  • x
  • c
  • t
  • γ
  • x
  • c
  • t
  • β
  • β
  • x
  • c
  • t
  • x
  • c
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results