Jump to navigation
Jump to search
General
Display information for equation id:math.2657.7 on revision:2657
* Page found: Klein Gordon und Relativität (eq math.2657.7)
(force rerendering)Occurrences on the following pages:
Hash: ad3a7f6bbf33769fa981510c1c2d732e
TeX (original user input):
\begin{align}
& \underline{{{{{x}'}}^{2}}-{{c}^{2}}{{{{t}'}}^{2}}}=\left( \begin{matrix}
{{x}'} & c{t}' \\
\end{matrix} \right)\left( \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{align}
& {{x}'} \\
& c{t}' \\
\end{align} \right)={{\gamma }^{2}}\left( \begin{matrix}
x & ct \\
\end{matrix} \right)\left( \begin{matrix}
1 & -\beta \\
-\beta & 1 \\
\end{matrix} \right)\left( \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{matrix}
1 & -\beta \\
-\beta & 1 \\
\end{matrix} \right)\left( \begin{align}
& x \\
& ct \\
\end{align} \right) \\
& ={{\gamma }^{2}}\left( \begin{matrix}
x & ct \\
\end{matrix} \right)\left( \begin{matrix}
1-{{\beta }^{2}} & 0 \\
0 & -1+{{\beta }^{2}} \\
\end{matrix} \right)\left( \begin{align}
& x \\
& ct \\
\end{align} \right)=\underline{{{x}^{2}}-{{c}^{2}}{{t}^{2}}}
\end{align}TeX (checked):
{\begin{aligned}&{\underline {{{{x}'}^{2}}-{{c}^{2}}{{{t}'}^{2}}}}=\left({\begin{matrix}{{x}'}&c{t}'\\\end{matrix}}\right)\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{aligned}&{{x}'}\\&c{t}'\\\end{aligned}}\right)={{\gamma }^{2}}\left({\begin{matrix}x&ct\\\end{matrix}}\right)\left({\begin{matrix}1&-\beta \\-\beta &1\\\end{matrix}}\right)\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{matrix}1&-\beta \\-\beta &1\\\end{matrix}}\right)\left({\begin{aligned}&x\\&ct\\\end{aligned}}\right)\\&={{\gamma }^{2}}\left({\begin{matrix}x&ct\\\end{matrix}}\right)\left({\begin{matrix}1-{{\beta }^{2}}&0\\0&-1+{{\beta }^{2}}\\\end{matrix}}\right)\left({\begin{aligned}&x\\&ct\\\end{aligned}}\right)={\underline {{{x}^{2}}-{{c}^{2}}{{t}^{2}}}}\end{aligned}}LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.893 KB / 527 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>′</mo></msup><mo>′</mo></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>′</mo></msup><mo>′</mo></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mo>_</mo></munder></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>′</mo></msup><mo>′</mo></msup></mrow></mtd><mtd><mi>c</mi><msup><msup><mi>t</mi><mo>′</mo></msup><mo>′</mo></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>′</mo></msup><mo>′</mo></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>c</mi><msup><msup><mi>t</mi><mo>′</mo></msup><mo>′</mo></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>x</mi></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mo>−</mo><mi>β</mi></mtd></mtr><mtr><mtd><mo>−</mo><mi>β</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mo>−</mo><mi>β</mi></mtd></mtr><mtr><mtd><mo>−</mo><mi>β</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>x</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>x</mi></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn><mo>−</mo><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mn>1</mn><mo>+</mo><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>x</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>c</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="ORD"><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mo>_</mo></munder></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Klein Gordon und Relativität page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results