Jump to navigation Jump to search

General

Display information for equation id:math.2651.16 on revision:2651

* Page found: Klein Gordon und Relativität (eq math.2651.16)

(force rerendering)

Occurrences on the following pages:

Hash: aecb86e2b133bc0e51041bd1aaf7c7a6

TeX (original user input):

\begin{align}

& {{\partial }_{x}}={{\partial }_{x}}\left( {{x}'} \right){{\partial }_{{{x}'}}}+{{\partial }_{x}}\left( {{t}'} \right){{\partial }_{{{t}'}}}=\gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \\

& \partial _{x}^{2}={{\partial }_{x}}{{\partial }_{x}}=\left\{ \gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \right\}\left\{ \gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \right\} \\

& \partial _{t}^{2}\,\text{analog} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\partial }_{x}}={{\partial }_{x}}\left({{x}'}\right){{\partial }_{{x}'}}+{{\partial }_{x}}\left({{t}'}\right){{\partial }_{{t}'}}=\gamma \,{{\partial }_{{x}'}}-{\frac {\gamma \beta }{c}}{{\partial }_{{t}'}}\\&\partial _{x}^{2}={{\partial }_{x}}{{\partial }_{x}}=\left\{\gamma \,{{\partial }_{{x}'}}-{\frac {\gamma \beta }{c}}{{\partial }_{{t}'}}\right\}\left\{\gamma \,{{\partial }_{{x}'}}-{\frac {\gamma \beta }{c}}{{\partial }_{{t}'}}\right\}\\&\partial _{t}^{2}\,{\text{analog}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.194 KB / 489 B) :

x=x(x)x+x(t)t=γxγβctx2=xx={γxγβct}{γxγβct}t2analog
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo>+</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo>=</mo><mi>&#x03B3;</mi><mspace width="0.167em"></mspace><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi><mi>&#x03B2;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>&#x03B3;</mi><mspace width="0.167em"></mspace><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi><mi>&#x03B2;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>&#x03B3;</mi><mspace width="0.167em"></mspace><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>x</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi><mi>&#x03B2;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msup><mi>t</mi><mo>&#x2032;</mo></msup><mo>&#x2032;</mo></msup></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover></mstyle><mspace width="0.167em"></mspace><mrow data-mjx-texclass="ORD"><mtext>analog</mtext></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon und Relativität page

Identifiers

  • x
  • x
  • x
  • x
  • x
  • t
  • t
  • γ
  • x
  • γ
  • β
  • c
  • t
  • x
  • x
  • x
  • γ
  • x
  • γ
  • β
  • c
  • t
  • γ
  • x
  • γ
  • β
  • c
  • t
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results