Jump to navigation Jump to search

General

Display information for equation id:math.2232.9 on revision:2232

* Page found: Quantentheoretischer Zugang (eq math.2232.9)

(force rerendering)

Occurrences on the following pages:

Hash: c67ef3f3f522ac7bb7eafcefc38d50a7

TeX (original user input):

\begin{align}
  & \Rightarrow {{e}^{i\vec{k}.\vec{r}}}={{e}^{i\vec{k}.\left( \vec{r}+\vec{L} \right)}},\quad \vec{L}=\left( L,L,L \right) \\
 & \Rightarrow {{e}^{i\vec{k}.\vec{r}}}=1\text{  w }\!\!\ddot{\mathrm{a}}\!\!\text{ hlen} \\
 & \Rightarrow {{k}_{i}}=\left( {{k}_{x}},{{k}_{y}},{{k}_{z}} \right):\,\,{{k}_{i}}=\frac{2\pi }{L}{{m}_{i}},\,\,{{m}_{i}}\in \mathbb{Z} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow {{e}^{i{\vec {k}}.{\vec {r}}}}={{e}^{i{\vec {k}}.\left({\vec {r}}+{\vec {L}}\right)}},\quad {\vec {L}}=\left(L,L,L\right)\\&\Rightarrow {{e}^{i{\vec {k}}.{\vec {r}}}}=1{\text{  w }}\!\!{\ddot {\mathrm {a} }}\!\!{\text{ hlen}}\\&\Rightarrow {{k}_{i}}=\left({{k}_{x}},{{k}_{y}},{{k}_{z}}\right):\,\,{{k}_{i}}={\frac {2\pi }{L}}{{m}_{i}},\,\,{{m}_{i}}\in \mathbb {Z} \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.607 KB / 591 B) :

eik.r=eik.(r+L),L=(L,L,L)eik.r=1 w a¨ hlenki=(kx,ky,kz):ki=2πLmi,mi
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo></mo></mover></mrow></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow></mrow></mrow></msup><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo></mo></mover></mrow></mrow><mo>.</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo></mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo>,</mo><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo></mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>L</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>L</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo></mo></mover></mrow></mrow><mo>.</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow></mrow></mrow></msup><mo>=</mo><mn>1</mn><mrow data-mjx-texclass="ORD"><mtext>&#xA0;w&#xA0;</mtext></mrow><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">a</mi></mrow><mo>¨</mo></mover></mrow></mrow><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mrow data-mjx-texclass="ORD"><mtext>&#xA0;hlen</mtext></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>,</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>,</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi><mspace width="0.167em"></mspace><mspace width="0.167em"></mspace><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow></mfrac></mrow><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>,</mo><mspace width="0.167em"></mspace><mspace width="0.167em"></mspace><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>&#x2208;</mo><mrow data-mjx-texclass="ORD"><mi mathvariant="double-struck">&#x2124;</mi></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Quantentheoretischer Zugang page

Identifiers

  • e
  • i
  • k
  • r
  • e
  • i
  • k
  • r
  • L
  • L
  • L
  • L
  • L
  • e
  • i
  • k
  • r
  • a¨
  • ki
  • kx
  • ky
  • kz
  • ki
  • π
  • L
  • mi
  • mi

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results