Jump to navigation
Jump to search
General
Display information for equation id:math.2232.70 on revision:2232
* Page found: Quantentheoretischer Zugang (eq math.2232.70)
(force rerendering)Occurrences on the following pages:
Hash: 737206c481da4b2450b538ab4cdce9b4
TeX (original user input):
\begin{align}
& \left\langle {{O}_{S}} \right\rangle =\operatorname{Tr}\left( \rho {{O}_{s}} \right)=\underbrace{\sum\limits_{n}{\left\langle n \right|\rho {{O}_{s}}\left| n \right\rangle }}_{\begin{smallmatrix}
n\text{ vollst}\text{. System im} \\
\text{Vielteilchenraum des }
\\
\text{Systems}
\end{smallmatrix}} \\
& =\sum\limits_{n}{\left\langle n \right|\underbrace{\sum\limits_{i}{{{w}_{i}}\left| {{\Psi }_{i}} \right\rangle \left\langle {{\Psi }_{i}} \right|}}_{\rho }{{O}_{s}}\left| n \right\rangle }=\sum\limits_{i}{{{w}_{i}}\left\langle {{\Psi }_{i}} \right|\underbrace{\sum\limits_{n}{\left| n \right\rangle \left\langle n \right|}}_{1}}{{O}_{s}}\left| {{\Psi }_{i}} \right\rangle \\
& =\sum\limits_{i}{{{w}_{i}}\underbrace{\left\langle {{\Psi }_{i}} \right|{{O}_{s}}\left| {{\Psi }_{i}} \right\rangle }_{\begin{smallmatrix}
\text{Erwartungswert einer} \\
\text{Gr }\!\!\ddot{\mathrm{o}}\!\!\text{ sse}\text{, bei der sich das System }
\\
\text{im Zustand }\left| {{\Psi }_{i}} \right\rangle \text{ befindet}
\end{smallmatrix}}}
\end{align}
TeX (checked):
{\begin{aligned}&\left\langle {{O}_{S}}\right\rangle =\operatorname {Tr} \left(\rho {{O}_{s}}\right)=\underbrace {\sum \limits _{n}{\left\langle n\right|\rho {{O}_{s}}\left|n\right\rangle }} _{\begin{smallmatrix}n{\text{ vollst}}{\text{. System im}}\\{\text{Vielteilchenraum des }}\\{\text{Systems}}\end{smallmatrix}}\\&=\sum \limits _{n}{\left\langle n\right|\underbrace {\sum \limits _{i}{{{w}_{i}}\left|{{\Psi }_{i}}\right\rangle \left\langle {{\Psi }_{i}}\right|}} _{\rho }{{O}_{s}}\left|n\right\rangle }=\sum \limits _{i}{{{w}_{i}}\left\langle {{\Psi }_{i}}\right|\underbrace {\sum \limits _{n}{\left|n\right\rangle \left\langle n\right|}} _{1}}{{O}_{s}}\left|{{\Psi }_{i}}\right\rangle \\&=\sum \limits _{i}{{{w}_{i}}\underbrace {\left\langle {{\Psi }_{i}}\right|{{O}_{s}}\left|{{\Psi }_{i}}\right\rangle } _{\begin{smallmatrix}{\text{Erwartungswert einer}}\\{\text{Gr }}\!\!{\ddot {\mathrm {o} }}\!\!{\text{ sse}}{\text{, bei der sich das System }}\\{\text{im Zustand }}\left|{{\Psi }_{i}}\right\rangle {\text{ befindet}}\end{smallmatrix}}}\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (6.548 KB / 777 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ρ</mi><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi>ρ</mi><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></mrow><mo>⏟</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>n</mi><mrow data-mjx-texclass="ORD"><mtext> vollst</mtext></mrow><mrow data-mjx-texclass="ORD"><mtext>. System im</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Vielteilchenraum des </mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Systems</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>w</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow><mo>⏟</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>ρ</mi></mrow></munder><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>w</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow><mo>⏟</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munder></mrow><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>w</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow><mo>⏟</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Erwartungswert einer</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Gr </mtext></mrow><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">o</mi></mrow><mo>¨</mo></mover></mrow></mrow><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mrow data-mjx-texclass="ORD"><mtext> sse</mtext></mrow><mrow data-mjx-texclass="ORD"><mtext>, bei der sich das System </mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>im Zustand </mtext></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mtext> befindet</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Quantentheoretischer Zugang page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results