Jump to navigation Jump to search

General

Display information for equation id:math.2232.70 on revision:2232

* Page found: Quantentheoretischer Zugang (eq math.2232.70)

(force rerendering)

Occurrences on the following pages:

Hash: 737206c481da4b2450b538ab4cdce9b4

TeX (original user input):

\begin{align}
  & \left\langle {{O}_{S}} \right\rangle =\operatorname{Tr}\left( \rho {{O}_{s}} \right)=\underbrace{\sum\limits_{n}{\left\langle  n \right|\rho {{O}_{s}}\left| n \right\rangle }}_{\begin{smallmatrix}
 n\text{ vollst}\text{. System im} \\
 \text{Vielteilchenraum des }
 \\
 \text{Systems}
\end{smallmatrix}} \\
 & =\sum\limits_{n}{\left\langle  n \right|\underbrace{\sum\limits_{i}{{{w}_{i}}\left| {{\Psi }_{i}} \right\rangle \left\langle  {{\Psi }_{i}} \right|}}_{\rho }{{O}_{s}}\left| n \right\rangle }=\sum\limits_{i}{{{w}_{i}}\left\langle  {{\Psi }_{i}} \right|\underbrace{\sum\limits_{n}{\left| n \right\rangle \left\langle  n \right|}}_{1}}{{O}_{s}}\left| {{\Psi }_{i}} \right\rangle  \\
 & =\sum\limits_{i}{{{w}_{i}}\underbrace{\left\langle  {{\Psi }_{i}} \right|{{O}_{s}}\left| {{\Psi }_{i}} \right\rangle }_{\begin{smallmatrix}
 \text{Erwartungswert einer} \\
 \text{Gr }\!\!\ddot{\mathrm{o}}\!\!\text{ sse}\text{, bei der sich das System }
 \\
 \text{im Zustand }\left| {{\Psi }_{i}} \right\rangle \text{ befindet}
\end{smallmatrix}}} 
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {{O}_{S}}\right\rangle =\operatorname {Tr} \left(\rho {{O}_{s}}\right)=\underbrace {\sum \limits _{n}{\left\langle n\right|\rho {{O}_{s}}\left|n\right\rangle }} _{\begin{smallmatrix}n{\text{ vollst}}{\text{. System im}}\\{\text{Vielteilchenraum des }}\\{\text{Systems}}\end{smallmatrix}}\\&=\sum \limits _{n}{\left\langle n\right|\underbrace {\sum \limits _{i}{{{w}_{i}}\left|{{\Psi }_{i}}\right\rangle \left\langle {{\Psi }_{i}}\right|}} _{\rho }{{O}_{s}}\left|n\right\rangle }=\sum \limits _{i}{{{w}_{i}}\left\langle {{\Psi }_{i}}\right|\underbrace {\sum \limits _{n}{\left|n\right\rangle \left\langle n\right|}} _{1}}{{O}_{s}}\left|{{\Psi }_{i}}\right\rangle \\&=\sum \limits _{i}{{{w}_{i}}\underbrace {\left\langle {{\Psi }_{i}}\right|{{O}_{s}}\left|{{\Psi }_{i}}\right\rangle } _{\begin{smallmatrix}{\text{Erwartungswert einer}}\\{\text{Gr }}\!\!{\ddot {\mathrm {o} }}\!\!{\text{ sse}}{\text{, bei der sich das System }}\\{\text{im Zustand }}\left|{{\Psi }_{i}}\right\rangle {\text{ befindet}}\end{smallmatrix}}}\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.548 KB / 777 B) :

OS=Tr(ρOs)=nn|ρOs|nn vollst. System imVielteilchenraum des Systems=nn|iwi|ΨiΨi|ρOs|n=iwiΨi|n|nn|1Os|Ψi=iwiΨi|Os|ΨiErwartungswert einerGr o¨ sse, bei der sich das System im Zustand |Ψi befindet
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C1;</mi><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi>&#x03C1;</mi><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>n</mi><mrow data-mjx-texclass="ORD"><mtext>&#xA0;vollst</mtext></mrow><mrow data-mjx-texclass="ORD"><mtext>. System im</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Vielteilchenraum des&#xA0;</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Systems</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>w</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></munder><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>w</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munder></mrow><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>w</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mi>O</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo data-mjx-texclass="OPEN"></mo><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Erwartungswert einer</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>Gr&#xA0;</mtext></mrow><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">o</mi></mrow><mo>¨</mo></mover></mrow></mrow><mspace width="-0.167em"></mspace><mspace width="-0.167em"></mspace><mrow data-mjx-texclass="ORD"><mtext>&#xA0;sse</mtext></mrow><mrow data-mjx-texclass="ORD"><mtext>, bei der sich das System&#xA0;</mtext></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mtext>im Zustand&#xA0;</mtext></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mtext>&#xA0;befindet</mtext></mrow></mtd></mtr></mtable></mrow></mrow></munder></mrow></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Quantentheoretischer Zugang page

Identifiers

  • OS
  • ρ
  • Os
  • n
  • n
  • ρ
  • Os
  • n
  • n
  • n
  • n
  • i
  • wi
  • Ψi
  • Ψi
  • ρ
  • Os
  • n
  • i
  • wi
  • Ψi
  • n
  • n
  • n
  • Os
  • Ψi
  • i
  • wi
  • Ψi
  • Os
  • Ψi
  • o¨
  • Ψi

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results