Jump to navigation Jump to search

General

Display information for equation id:math.2232.30 on revision:2232

* Page found: Quantentheoretischer Zugang (eq math.2232.30)

(force rerendering)

Occurrences on the following pages:

Hash: c406d796052e302847f822eb0fccd640

TeX (original user input):

{{\Psi }_{F}}=\frac{1}{\sqrt{N!}}\underbrace{\sum\limits_{P}{\operatorname{sign}\left( P \right)P\left( {{\varphi }_{{{n}_{1}}}}\left( {{x}_{1}} \right)\ldots {{\varphi }_{{{n}_{k}}}}\left( {{x}_{k}} \right)\ldots {{\varphi }_{{{n}_{N}}}}\left( {{x}_{N}} \right) \right)}}_{\text{Anzahl der Vertauschungen um die Permutation zu konstruieren mal }\left( -1 \right)}

TeX (checked):

{{\Psi }_{F}}={\frac {1}{\sqrt {N!}}}\underbrace {\sum \limits _{P}{\operatorname {sign} \left(P\right)P\left({{\varphi }_{{n}_{1}}}\left({{x}_{1}}\right)\ldots {{\varphi }_{{n}_{k}}}\left({{x}_{k}}\right)\ldots {{\varphi }_{{n}_{N}}}\left({{x}_{N}}\right)\right)}} _{{\text{Anzahl der Vertauschungen um die Permutation zu konstruieren mal }}\left(-1\right)}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.369 KB / 491 B) :

ΨF=1N!Psign(P)P(φn1(x1)φnk(xk)φnN(xN))Anzahl der Vertauschungen um die Permutation zu konstruieren mal (1)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>F</mi></mrow></msub></mstyle><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>P</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mi data-mjx-texclass="OP" mathvariant="normal">sign</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>P</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>P</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03C6;</mi><mrow data-mjx-texclass="ORD"><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2026;</mo><msub><mi>&#x03C6;</mi><mrow data-mjx-texclass="ORD"><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2026;</mo><msub><mi>&#x03C6;</mi><mrow data-mjx-texclass="ORD"><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>Anzahl der Vertauschungen um die Permutation zu konstruieren mal&#xA0;</mtext></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></munder></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Quantentheoretischer Zugang page

Identifiers

  • ΨF
  • N
  • P
  • P
  • P
  • φn1
  • x1
  • φnk
  • xk
  • φnN
  • xN

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results