Jump to navigation Jump to search

General

Display information for equation id:math.2232.12 on revision:2232

* Page found: Quantentheoretischer Zugang (eq math.2232.12)

(force rerendering)

Occurrences on the following pages:

Hash: 54aa4824c72bd813e5ef2fd347e547d4

TeX (original user input):

{{\sum }_{\vec{k}\in \text{3-Dim Raum}}}=\sum\limits_{\text{k}}{\frac{{{\Delta }^{\text{3}}}k}{\underbrace{{{\Delta }^{\text{3}}}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int{{{d}^{\text{3}}}k}

TeX (checked):

{{\sum }_{{\vec {k}}\in {\text{3-Dim Raum}}}}=\sum \limits _{\text{k}}{\frac {{{\Delta }^{\text{3}}}k}{\underbrace {{{\Delta }^{\text{3}}}k} _{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left({\frac {L}{2\pi }}\right)}^{3}}\sum \limits _{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left({\frac {L}{2\pi }}\right)}^{3}}\int {{{d}^{\text{3}}}k}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.945 KB / 491 B) :

k3-Dim Raum=kΔ3kΔ3kΔkxΔΔkyΔkz=(L2π)3kΔ3k(L2π)3d3k
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><mo texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo></mo></mover></mrow></mrow><mo>&#x2208;</mo><mrow data-mjx-texclass="ORD"><mtext>3-Dim Raum</mtext></mrow></mrow></mrow></msub></mstyle><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>k</mtext></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>3</mtext></mrow></mrow></msup><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><munder><mrow data-mjx-texclass="OP"><munder><mrow data-mjx-texclass="ORD"><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>3</mtext></mrow></mrow></msup><mi>k</mi></mrow><mo>&#x23DF;</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x0394;</mi><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>x</mi><mi mathvariant="normal">&#x0394;</mi></mrow></mrow></msub><mi mathvariant="normal">&#x0394;</mi><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mi mathvariant="normal">&#x0394;</mi><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub></mrow></mrow></munder></mrow></mfrac></mrow><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>k</mtext></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>3</mtext></mrow></mrow></msup><mi>k</mi></mrow><mo accent="false">&#x2192;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>L</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mtext>3</mtext></mrow></mrow></msup><mi>k</mi></mrow></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Quantentheoretischer Zugang page

Identifiers

  • k
  • Δ
  • k
  • Δ
  • k
  • Δ
  • kxΔ
  • Δ
  • ky
  • Δ
  • kz
  • L
  • π
  • Δ
  • k
  • L
  • π
  • k

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results