Jump to navigation Jump to search

General

Display information for equation id:math.1968.5 on revision:1968

* Page found: Der Satz von Liouville (eq math.1968.5)

(force rerendering)

Occurrences on the following pages:

Hash: 4aa536345e39106ce83f864fd904b1b4

TeX (original user input):

\begin{align}
  & \bar{x}(t)=\sum\limits_{n}{{}}\frac{{{\left[ \left( t-{{t}_{0}} \right)A \right]}^{n}}}{n!}{{{\bar{x}}}_{0}}=\left[ 1\cos {{\omega }_{0}}(t-{{t}_{0}})+\frac{A}{{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}}) \right]{{{\bar{x}}}_{0}} \\ 
 & =\left( \begin{matrix}
   \cos {{\omega }_{0}}(t-{{t}_{0}}) & \frac{1}{{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})  \\
   -{{\omega }_{0}}\sin {{\omega }_{0}}(t-{{t}_{0}}) & \cos {{\omega }_{0}}(t-{{t}_{0}})  \\
\end{matrix} \right){{{\bar{x}}}_{0}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {x}}(t)=\sum \limits _{n}{}{\frac {{\left[\left(t-{{t}_{0}}\right)A\right]}^{n}}{n!}}{{\bar {x}}_{0}}=\left[1\cos {{\omega }_{0}}(t-{{t}_{0}})+{\frac {A}{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})\right]{{\bar {x}}_{0}}\\&=\left({\begin{matrix}\cos {{\omega }_{0}}(t-{{t}_{0}})&{\frac {1}{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})\\-{{\omega }_{0}}\sin {{\omega }_{0}}(t-{{t}_{0}})&\cos {{\omega }_{0}}(t-{{t}_{0}})\\\end{matrix}}\right){{\bar {x}}_{0}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.262 KB / 574 B) :

x¯(t)=n[(tt0)A]nn!x¯0=[1cosω0(tt0)+Aω0sinω0(tt0)]x¯0=(cosω0(tt0)1ω0sinω0(tt0)ω0sinω0(tt0)cosω0(tt0))x¯0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>A</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>!</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mi>cos</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd><mtd><mi>cos</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Satz von Liouville page

Identifiers

  • x¯
  • t
  • n
  • t
  • t0
  • A
  • n
  • n
  • x¯0
  • ω0
  • t
  • t0
  • A
  • ω0
  • ω0
  • t
  • t0
  • x¯0
  • ω0
  • t
  • t0
  • ω0
  • ω0
  • t
  • t0
  • ω0
  • ω0
  • t
  • t0
  • ω0
  • t
  • t0
  • x¯0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results