Jump to navigation
Jump to search
General
Display information for equation id:math.1967.5 on revision:1967
* Page found: Der Satz von Liouville (eq math.1967.5)
(force rerendering)Occurrences on the following pages:
Hash: 4aa536345e39106ce83f864fd904b1b4
TeX (original user input):
\begin{align}
& \bar{x}(t)=\sum\limits_{n}{{}}\frac{{{\left[ \left( t-{{t}_{0}} \right)A \right]}^{n}}}{n!}{{{\bar{x}}}_{0}}=\left[ 1\cos {{\omega }_{0}}(t-{{t}_{0}})+\frac{A}{{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}}) \right]{{{\bar{x}}}_{0}} \\
& =\left( \begin{matrix}
\cos {{\omega }_{0}}(t-{{t}_{0}}) & \frac{1}{{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}}) \\
-{{\omega }_{0}}\sin {{\omega }_{0}}(t-{{t}_{0}}) & \cos {{\omega }_{0}}(t-{{t}_{0}}) \\
\end{matrix} \right){{{\bar{x}}}_{0}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {x}}(t)=\sum \limits _{n}{}{\frac {{\left[\left(t-{{t}_{0}}\right)A\right]}^{n}}{n!}}{{\bar {x}}_{0}}=\left[1\cos {{\omega }_{0}}(t-{{t}_{0}})+{\frac {A}{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})\right]{{\bar {x}}_{0}}\\&=\left({\begin{matrix}\cos {{\omega }_{0}}(t-{{t}_{0}})&{\frac {1}{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})\\-{{\omega }_{0}}\sin {{\omega }_{0}}(t-{{t}_{0}})&\cos {{\omega }_{0}}(t-{{t}_{0}})\\\end{matrix}}\right){{\bar {x}}_{0}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (4.262 KB / 574 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>A</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>!</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mi>cos</mi><mo>⁡</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>sin</mi><mo>⁡</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>⁡</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>sin</mi><mo>⁡</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mo>−</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>sin</mi><mo>⁡</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd><mtd><mi>cos</mi><mo>⁡</mo><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Satz von Liouville page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results