Jump to navigation Jump to search

General

Display information for equation id:math.1804.58 on revision:1804

* Page found: Dirac- Gleichung für Elektronen (eq math.1804.58)

(force rerendering)

Occurrences on the following pages:

Hash: e73ad2140491879bd47b4ae7ac79f72c

TeX (original user input):

\begin{align}

& i\hbar \left( {{\Psi }^{+}}\dot{\Psi }+{{{\dot{\Psi }}}^{+}}\Psi  \right)=-i\hbar c\left( {{\Psi }^{+}}{{\alpha }^{\mu }}\left( {{\partial }_{\mu }}\Psi  \right)+\left( {{\partial }_{\mu }}{{\Psi }^{+}} \right){{\alpha }^{\mu }}\Psi  \right) \\

& \left( {{\Psi }^{+}}\dot{\Psi }+{{{\dot{\Psi }}}^{+}}\Psi  \right)=\frac{\partial }{\partial t}\left( {{\Psi }^{+}}\Psi  \right) \\

& \left( {{\Psi }^{+}}{{\alpha }^{\mu }}\left( {{\partial }_{\mu }}\Psi  \right)+\left( {{\partial }_{\mu }}{{\Psi }^{+}} \right){{\alpha }^{\mu }}\Psi  \right)={{\partial }_{\mu }}\left( {{\Psi }^{+}}{{\alpha }^{\mu }}\Psi  \right) \\

& \Rightarrow i\hbar \frac{\partial }{\partial t}\left( {{\Psi }^{+}}\Psi  \right)+c{{\partial }_{\mu }}\left( {{\Psi }^{+}}{{\alpha }^{\mu }}\Psi  \right)=0 \\

& \Rightarrow \left( {{\Psi }^{+}}\Psi  \right)=\rho  \\

& \Rightarrow \left( {{\Psi }^{+}}{{\alpha }^{\mu }}\Psi  \right)=\frac{{{j}^{\mu }}}{c} \\

\end{align}

TeX (checked):

{\begin{aligned}&i\hbar \left({{\Psi }^{+}}{\dot {\Psi }}+{{\dot {\Psi }}^{+}}\Psi \right)=-i\hbar c\left({{\Psi }^{+}}{{\alpha }^{\mu }}\left({{\partial }_{\mu }}\Psi \right)+\left({{\partial }_{\mu }}{{\Psi }^{+}}\right){{\alpha }^{\mu }}\Psi \right)\\&\left({{\Psi }^{+}}{\dot {\Psi }}+{{\dot {\Psi }}^{+}}\Psi \right)={\frac {\partial }{\partial t}}\left({{\Psi }^{+}}\Psi \right)\\&\left({{\Psi }^{+}}{{\alpha }^{\mu }}\left({{\partial }_{\mu }}\Psi \right)+\left({{\partial }_{\mu }}{{\Psi }^{+}}\right){{\alpha }^{\mu }}\Psi \right)={{\partial }_{\mu }}\left({{\Psi }^{+}}{{\alpha }^{\mu }}\Psi \right)\\&\Rightarrow i\hbar {\frac {\partial }{\partial t}}\left({{\Psi }^{+}}\Psi \right)+c{{\partial }_{\mu }}\left({{\Psi }^{+}}{{\alpha }^{\mu }}\Psi \right)=0\\&\Rightarrow \left({{\Psi }^{+}}\Psi \right)=\rho \\&\Rightarrow \left({{\Psi }^{+}}{{\alpha }^{\mu }}\Psi \right)={\frac {{j}^{\mu }}{c}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.406 KB / 565 B) :

i(Ψ+Ψ˙+Ψ˙+Ψ)=ic(Ψ+αμ(μΨ)+(μΨ+)αμΨ)(Ψ+Ψ˙+Ψ˙+Ψ)=t(Ψ+Ψ)(Ψ+αμ(μΨ)+(μΨ+)αμΨ)=μ(Ψ+αμΨ)it(Ψ+Ψ)+cμ(Ψ+αμΨ)=0(Ψ+Ψ)=ρ(Ψ+αμΨ)=jμc
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>c</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>c</mi><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03C1;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dirac- Gleichung für Elektronen page

Identifiers

  • i
  • Ψ
  • Ψ˙
  • Ψ˙
  • Ψ
  • i
  • c
  • Ψ
  • α
  • μ
  • μ
  • Ψ
  • μ
  • Ψ
  • α
  • μ
  • Ψ
  • Ψ
  • Ψ˙
  • Ψ˙
  • Ψ
  • t
  • Ψ
  • Ψ
  • Ψ
  • α
  • μ
  • μ
  • Ψ
  • μ
  • Ψ
  • α
  • μ
  • Ψ
  • μ
  • Ψ
  • α
  • μ
  • Ψ
  • i
  • t
  • Ψ
  • Ψ
  • c
  • μ
  • Ψ
  • α
  • μ
  • Ψ
  • Ψ
  • Ψ
  • ρ
  • Ψ
  • α
  • μ
  • Ψ
  • j
  • μ
  • c

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results