Jump to navigation Jump to search

General

Display information for equation id:math.1695.20 on revision:1695

* Page found: Dynamik des 2- Zustands- Systems (eq math.1695.20)

(force rerendering)

Occurrences on the following pages:

Hash: a77710ac44b83ac5dba3e21b257db936

TeX (original user input):

\hbar {{\omega }_{l}}\left( \begin{matrix}
1 & 0  \\
0 & -1  \\
\end{matrix} \right)\left( \begin{matrix}
{{a}_{1}}(t)  \\
{{a}_{2}}(t)  \\
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}
{{a}_{1}}(t)  \\
{{a}_{2}}(t)  \\
\end{matrix} \right)\Leftrightarrow \begin{matrix}
-i{{\omega }_{l}}{{a}_{1}}={{{\dot{a}}}_{1}}  \\
i{{\omega }_{l}}{{a}_{2}}={{{\dot{a}}}_{2}}  \\
\end{matrix}

TeX (checked):

\hbar {{\omega }_{l}}\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{matrix}{{a}_{1}}(t)\\{{a}_{2}}(t)\\\end{matrix}}\right)=i\hbar {\frac {\partial }{\partial t}}\left({\begin{matrix}{{a}_{1}}(t)\\{{a}_{2}}(t)\\\end{matrix}}\right)\Leftrightarrow {\begin{matrix}-i{{\omega }_{l}}{{a}_{1}}={{\dot {a}}_{1}}\\i{{\omega }_{l}}{{a}_{2}}={{\dot {a}}_{2}}\\\end{matrix}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.77 KB / 464 B) :

ωl(1001)(a1(t)a2(t))=it(a1(t)a2(t))iωla1=a˙1iωla2=a˙2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D4;</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mo>&#x2212;</mo><mi>i</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>a</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>i</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>a</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamik des 2- Zustands- Systems page

Identifiers

  • ωl
  • a1
  • t
  • a2
  • t
  • i
  • t
  • a1
  • t
  • a2
  • t
  • i
  • ωl
  • a1
  • a˙1
  • i
  • ωl
  • a2
  • a˙2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results