Jump to navigation Jump to search

General

Display information for equation id:math.1695.12 on revision:1695

* Page found: Dynamik des 2- Zustands- Systems (eq math.1695.12)

(force rerendering)

Occurrences on the following pages:

Hash: 45277290dc3552bbc7d106392ce8f9e1

TeX (original user input):

\begin{align}
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right)+{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right)-{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{3}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{3}} \right\rangle }_{0}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\left\langle {{\hat {\bar {\sigma }}}_{1}}\right\rangle }_{t}}={{\left\langle {{\hat {\bar {\sigma }}}_{2}}\right\rangle }_{0}}\sin \left(2{{\omega }_{l}}t\right)+{{\left\langle {{\hat {\bar {\sigma }}}_{1}}\right\rangle }_{0}}\cos \left(2{{\omega }_{l}}t\right)\\&{{\left\langle {{\hat {\bar {\sigma }}}_{2}}\right\rangle }_{t}}={{\left\langle {{\hat {\bar {\sigma }}}_{2}}\right\rangle }_{0}}\cos \left(2{{\omega }_{l}}t\right)-{{\left\langle {{\hat {\bar {\sigma }}}_{1}}\right\rangle }_{0}}\sin \left(2{{\omega }_{l}}t\right)\\&{{\left\langle {{\hat {\bar {\sigma }}}_{3}}\right\rangle }_{t}}={{\left\langle {{\hat {\bar {\sigma }}}_{3}}\right\rangle }_{0}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.082 KB / 454 B) :

σ¯^1t=σ¯^20sin(2ωlt)+σ¯^10cos(2ωlt)σ¯^2t=σ¯^20cos(2ωlt)σ¯^10sin(2ωlt)σ¯^3t=σ¯^30
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamik des 2- Zustands- Systems page

Identifiers

  • σ¯^1t
  • σ¯^20
  • ωl
  • t
  • σ¯^10
  • ωl
  • t
  • σ¯^2t
  • σ¯^20
  • ωl
  • t
  • σ¯^10
  • ωl
  • t
  • σ¯^3t
  • σ¯^30

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results