Spin- Operatoren und Zustände
65px|Kein GFDL | Der Artikel Spin- Operatoren und Zustände basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 1) der Quantenmechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=1}} Kategorie:Quantenmechanik __SHOWFACTBOX__
Stern-Gerlach Experiment{{#set:Fachbegriff=Stern-Gerlach Experiment|Index=Stern-Gerlach Experiment}}: (1922)
Datei:Stern-Gerlach_Experiment_de.png
Für das inhomogene Magnetfeld gilt:
Die Kraft auf das magnetische Moment ergibt sich gemäß
Somit: Ablenkung proportional zu µ3!!
Bahndrehimpuls l ergäbe - fache Strahlaufspaltung (also in jedem Fall ungeradzahlige Strahlaufspaltung)
Beobachtet wurde zweifache Aufspaltung !!
Eigendrehimpuls (Spin{{#set:Fachbegriff=Spin|Index=Spin}}) des Elektrons !
Klassische Vorstellung: Rotation eines geladenen Körpers um seine eigene Achse:
Dies ist jedoch falsch ! Vielmehr wurde experimentell der folgende Wert ermittelt:
mit g=2,0023 g sogenannter Lande-Faktor{{#set:Fachbegriff=Lande-Faktor|Index=Lande-Faktor}} (gyromagnetischer Faktor)
Mit relativistischen Korrekturen kommt man zu der Abweichung von der genauen 2 !!!
Spin als Freiheitsgrad des Elektrons
Spin-Eigenzustände{{#set:Fachbegriff=Spin-Eigenzustände|Index=Spin-Eigenzustände}}:
Spin-Hilbertraum{{#set:Fachbegriff=Spin-Hilbertraum|Index=Spin-Hilbertraum}} (zweidimensional !)
Notation:
Mit Eigenwerten und Spinzuständen als Eigenzustände:
Das heißt, jeder beliebige, auch zeitabhängige Spinzustand kann entwickelt werden als
Aus:
(ganz allgemeine Drehimpuls-Vertauschungs-Relation{{#set:Fachbegriff=Drehimpuls-Vertauschungs-Relation|Index=Drehimpuls-Vertauschungs-Relation}})
(Operatoren, die dieser Relation genügen sind als Drehimpulse definiert !)
folgt:
Spin-Leiteroperatoren{{#set:Fachbegriff=Spin-Leiteroperatoren|Index=Spin-Leiteroperatoren}}:
Somit folgt:
Andererseits gilt:
Beliebige Koeffizienten als Ansatz setzen !
Berechnung der Koeffizienten :
Weiter:
Aber gleichzeitig, wenn man den Operator gekreuzt nach links wirken läßt:
O.B. d. A.: wähle
Auch hier gewinnt man wieder Bestimmungsgleichungen für die Eigenwerte bzw. die Koeffizienten, wir haben ja keine Eigenwerte hier, indem man die gesuchten Operatoren durch bekannte ausdrückt !
So folgt:
Außerdem:
Die Spin- Operatoren lassen sich in diesem Sinne durch 2x2 Matrizen darstellen:
(Im zweidimensionalen Spin- Eigenraum):
Die Matrizen lassen sich ausschreiben: Paulische Spinmatrizen{{#set:Fachbegriff=Paulische Spinmatrizen|Index=Paulische Spinmatrizen}}:
Was den bekannten Relationen genügt:
erfüllt, .... usw...
S3- Darstellung der Zustände:
Dabei kennzeichnen die Basis- Spinoren ( Spaltenvektoren)
Zeilenvektoren ( transponiert)
was äquivalent ist zu