| 
				   | 
				
| Line 16: | 
Line 16: | 
 | ==MathTEST==  |  | ==MathTEST==  | 
 | 
  |  | 
  | 
 |  | =sect33=  | 
 |  | ==sect333===  | 
 |  | text111  | 
 | <math>\sin^2(x)+\cos(x)^2+e^{i \pi}+0</math>  |  | <math>\sin^2(x)+\cos(x)^2+e^{i \pi}+0</math>  | 
 |    |  | text222  | 
 |    |  | 
 | Mediawiki-Math:
  |  | 
 | <math>\sin(x)^2+\cos(x)^2+e^{i \pi}=0</math>
  |  | 
 |    |  | 
 | <math>\begin{align}
  |  | 
 | & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t) \\
  |  | 
 | & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
  |  | 
 | & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
  |  | 
 | & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi  \\
  |  | 
 | & \left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\
  |  | 
 | & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right]
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 |    |  | 
 |    |  | 
 |    |  | 
 | <math>\underline{b}</math>
  |  | 
 |    |  | 
 |    |  | 
 | <math>\begin{align}a&+b\\\\c&+d\end{align}</math>
  |  | 
 |    |  | 
 |    |  | 
 | <math>\text{Magnetfeld}\quad </math>
  |  | 
 |    |  | 
 | <math>\underline{\nabla }</math>
  |  | 
 | <math>c+c*c^2+c+2c+8+ \cos^2x+y</math>
  |  | 
 |    |  | 
 | <math>
  |  | 
 | \begin{align} \text{Magnetfeld}
  |  | 
 | \quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ \text{elektrisches Feld}\quad \underline{E}&=-\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \text{one or about spaces} \end{align}
  |  | 
 | </math>
  |  | 
Im PhysikWiki findet man
- sowie eine Übersicht über die ART.
 
FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter
physikerwelt.de.
Das PhysikWiki ist ein MediaBotz Projekt.
Jetzt neu: Kernphysik
MathTEST
sect33
sect333=
text111
text222