Klein Gordon und Relativität: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
[[Datei:Koordinatensysteme.svg|miniatur| Geschwindigkeit v parallel zu x]] | {{Beispiel|1=[[Datei:Koordinatensysteme.svg|miniatur| Geschwindigkeit v parallel zu x]] | ||
<u>Beispiel</u>: Ein Lichtpuls im System S wird zur Zeit t=0 ausgesandt und legt nach Zeit t die Distanz <math>\left| r \right|=ct</math> zurück. | <u>Beispiel</u>: Ein Lichtpuls im System S wird zur Zeit t=0 ausgesandt und legt nach Zeit t die Distanz <math>\left| r \right|=ct</math> zurück. | ||
{{NumBlk|:|<math>{{r}^{2}}-{{c}^{2}}{{t}^{2}}=0\quad</math>|(1.9) |RawN=.|extra=(in S)}} | {{NumBlk|:|<math>{{r}^{2}}-{{c}^{2}}{{t}^{2}}=0\quad</math>|(1.9) |RawN=.|extra=(in S)}} | ||
Derselbe Lichtpuls beobachtete vom gleichförmig gegen S bewegten System S‘ habe die neuen Koordinaten <math>\left( {\underline{r}}',{t}' \right)</math> in S‘, für die gilt | Derselbe Lichtpuls beobachtete vom gleichförmig gegen S bewegten System S‘ habe die neuen Koordinaten <math>\left( {\underline{r}}',{t}' \right)</math> in S‘, für die gilt | ||
{{NumBlk|:|<math>{{{r}'}^{2}}-{{\underbrace{c}_{={c}'}}^{2}}{{{t}'}^{2}}=0\quad</math>|(1.10)|RawN=.|extra=(in S‘)}} | {{NumBlk|:|<math>{{{r}'}^{2}}-{{\underbrace{c}_{={c}'}}^{2}}{{{t}'}^{2}}=0\quad</math>|(1.10)|RawN=.|extra=(in S‘)}} | ||
}} | |||
Revision as of 12:29, 5 September 2010
65px|Kein GFDL | Der Artikel Klein Gordon und Relativität basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 2) der Quantenmechanikvorlesung von Prof. Dr. T. Brandes. |
|}}
{{#set:Urheber=Prof. Dr. T. Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=2}} Kategorie:Quantenmechanik __SHOWFACTBOX__
Einstein (SRT):
- gleiche Naturgesetze in gleichförmig gegeneinander bewegten Inertialsystemen
- Lichtgeschwindigkeit in allen Inertialsystemen die selbe
miniatur| Geschwindigkeit v parallel zu x
Beispiel: Ein Lichtpuls im System S wird zur Zeit t=0 ausgesandt und legt nach Zeit t die Distanz zurück. Derselbe Lichtpuls beobachtete vom gleichförmig gegen S bewegten System S‘ habe die neuen Koordinaten in S‘, für die gilt |
Die Transformation der Koordinaten[1] erfolgt nach der Lorentz-Transformation{{#set:Fachbegriff=Lorentz-Transformation|Index=Lorentz-Transformation}}
mit
Daraus folgt (mit v → -v) (CHECK)
Wir überprüfen die Übereinstimmung mit (1.10)
- Unter Lorentz-Transformation bleibt invariant.
- Hier nur gezeigt für x-Koordinate; wegen Isotropie des Raumes gültig für beliebiges.
- Insbesondere bleiben die Lichtabstände{{#set:Fachbegriff=Lichtabstände|Index=Lichtabstände}} invariant.
Invarianz der Wellengleichungen (Klein-Gordon-Gleichung) unter Lorentz-Transformation (LT)
Wellengleichung{{#set:Fachbegriff=Wellengleichung|Index=Wellengleichung}} für skalares klassisches Feld
Zeige dass unter Lorentz-Transformation in übergeht: Lösungen φ‘ in S‘ haben dann die selbe Form wie Lösungen φ in S.
Hierzu
AUFGABE
- d’Alembert-Operator ist invariant unter LT
- Forminvarianz der Wellengleichung und Klein Gordon Gleichung unter LT.
Lösungen der Klein Gordon Gleichung
Sind ebene Wellen{{#set:Fachbegriff=ebene Wellen|Index=ebene Wellen}} (und deren Überlagerungen):
mit
Literatur
LITERATUR: SKRIPT SCHLICKEISER (QMII BOCHUM), LEHRBUCH SCHWINGER (CLASSICAL ELECTRODYNAMICS)
- ↑ Hier ist die Bewegung in x-Richtung also die x-Achse ist parallel zu v und y‘=y, z‘=z
__SHOWFACTBOX__