Prüfungsfragen:Statistische Physik: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 113: Line 113:


=Zustandssumme=
=Zustandssumme=
kanonische Verteilung <math>Z=e^\psi=e^{1+\lambda_0}=\sum_alpha e^{-\lambda_n A_\alpha^n}</math>{{Quelle|St7B|5.4.15|S47}}
kanonische Verteilung <math>Z=e^\psi=e^{1+\lambda_0}=\sum_\alpha e^{-\lambda_n A_\alpha^n}</math>{{Quelle|St7B|5.4.15|S47}}


:<math>\begin{align}
:<math>\begin{align}

Revision as of 19:37, 2 September 2010

Warum betreibt man statistische Physik

Template:Frage

  • Beschreibung von Vielteilchensystemen --> viele Freiheitsgrade-->unmöglich Lösung anzugeben
  • Mangel an Informationen --> Mangel an Fragen


Ziel Gesetzte für makroskopische/mikroskopische Systemvariablen unter Einfluss externer Felder finden Wahrscheinlichkeitsverteilungen der Quantenmechanischen Zustände Ψi )

BILD Gν als Funktion von λν,hα auffassen

Viele mikrozustände führen zum selben makrozustand siehe auch [1]

Was sind die Konzepte der statistischen Physik

-Konzept zur Mittelung von Vielteilchensystemen.

Shannon Information: Maß für Informationsgehelt von Wahrscheinlichkeitsverteilungen

Entropie: Maß des Nichtwissens-

Shannon Information

Shannon Information I[pα]:=αpαlnpα [2]

Minimierung der Shannon-Information

Schöll S21 λ=(Ψ+1) Variation unter NB αpα=1 ist eine Observable Annahme N_m andere Observable


D[x Log[x], x]=Log[x]+1


0=αδpα(lnpα+1+n=1NMλnAαn)[3]

pα=exp(ΨλnAαn)

Ψ=1λ0

verallgmeinerte kanonische Verteilung

?Volumenabhängigkeit


Entropie

Über negative Shannon Info *k S:=kI[pα]=kαpαlnpα [4]

Über Dichtematrix/operator S:=klnρ=kTr(lnρ=kαpαlnpα

Minimum bei reinen Zuständen? S(ρ)0

TD dS=dQT

Bose-Einstein-Kondensation

Dichteoperator f kanonisches Ensemble

ρ=alphapαketbraαα

\alpha Eigenstate

pα=1Zexp(βϵα)

Z Zustandssumme

Bose-Verteilung

n(E)=1eβ(Eμ)1,β=1kT

Bei Photonen µ=0

hohe Temperatur ?

Kurve schneidet Y nicht

File:Bose-einstein-fermi-dirac.png

Fermi-Verteilung

n(E)=1eβ(Eμ)+1,β=1kT T=0 Fermi Energie µ->E_f bei T=0 und als Fermienergie bezeichnet Bild:Fermi_dirac_distr.svg

Boltzmann-Verteilung

n(Ei)=1eβ(Eiμ) Schneidet bei 1 ideales Gas (kein eWW)

Chemisches Potential? klassischer Grenzfall geringe Teilchendichte, hohe Temperatur

gilt bei hoher Energie und geringer dichte

photonen haben kein ch potential

Wärmekapazität

Speicherfähigkeit der thermischen Energie pro Temperaturänderung

   C_X= \left.\frac{\delta Q}{\mathrm{d} T}\right|_X 

?Elektronen ?Photonen ?klassisch


GKSO

gerneralisierter kanonischer statistischer Operator ?Zustandssumme


Zustandssumme

kanonische Verteilung Z=eψ=e1+λ0=αeλnAαn[5]

Zk(N,V,T)=ieβEi.Zgk(μ,V,T)=ieβ(EiμNi)Zm(U,N,V)=Eψ(N,V)U1Zm(U,N,V)=H(p,q,N,V)Ud3Npd3Nqh3NN!

Wie kann man Potentiale berechnen?

S(N,V,E)=kBlogZm(N,V,E)F(N,V,T)=kBTlogZk(N,V,T)Ω(μ,V,T)=kBTlogZg(μ,V,T)

[1]

Zustandsgleichung

Wie erhält man sie

Zustandsdichte

Die Zustandsdichte D(E) bzw. D(ω) ist eine physikalische Größe, die angibt, wie viele Zustände innerhalb des Energie- bzw. Frequenzintervalls [E,E + dE] bzw. [ω,ω + dω] existieren. D(E)=2ddE(N(E)V)mitV=LxLyLz. [2]

Enthalpie

H:=U+pV:=U(S,V,N)UVS,NV [6] [7] dH=TdS+Vdp+μdN dU: änderung der inneren Energie d(pV) Änderung der Volumenarbeit

Freie Energie

Von Variablen Volumen Temperatur und Teilchenzahl abhängig Zusammenhang mit Zustandssumme F(T,V,N)kTlnZk

also dem kanonischen Ensemble zugeordnet thermodynamisches Potential


  • partielle Ableitung?

Großkanonisches Potential

[3]

Ω:=FμN=UTSμN
   dΩ = − SdT − Ndμ − pdV 

Ω = − pV.

thermische Wellenlänge

f ideales Gas λ=h2πmhT,E=πhT?

Temperatur

T1=SE

mikroskopisches Ensemble

chemisches Potential

-Einschränkung: Bosegas nur kleiner 0 Zulässig

Dichtematrixgleichung

Gleichgewicht Zeitabhängigkeite 0 äussere Felder konstat anschaulich keine Übergänge finden statt

herleitung

Lösunge der Dichtematrixgleichung F. GoldenRule

Mittelwert

f(X)=n=1dpnf(xn)=dxp(x)f(x)

mit delta verknüpft für das normalerweise gilt

limε>01εp(xε)=δ(x)

[8]

Ensemble Theorie

Liste: mikrokanonisch N,V,E kanonisch NTV -->F großkanonisch µ V T \Omeaga (kanonisch harmonisch) N P T

Skizzen

Hohlraumstrahlung

Plancksche Strahlungsformel

-herleitung: scon schön mgl kanonischem ensemble zumme über zustände im hamiltonian spin der Photonen beachten (polarisationszustand) Zustandsdglichungen der Photonen E=const T^4 p=1/3E/V

Potentialtopf

ϵn=2π22mL2

φn(r)=2Lsin(nxπLx)2Lsin(nyπLy)2Lsin(nzπLz)mit

k(L2π)3d3k

φk=1Veik.r,ki=2πLmi,mik.r=ikixi

Quantentheoretischer_Zugang

Druck

p=FV

isoliertes System: p=EV [9] Energie,Volumen

kanonisches Ensemble

Dichteoperator \rho=Z^{-1} e^{-\beta H} N,V Fest μ=1βNlnZ Energieeigenmwerte \epsilon_r Z=rexp(βϵr)

mikrokanonisches Ensemble (Definition)

Übergang Stat M zu Thermodyn

1/T=dS/dE

von Neumann Gleichung

Mastergleichung

statistischer Operator

  • Entropiedefinition
  • Interpreation

Großkanonischer Operator

Was kann man damit bereichen Skizze zu Wärmebad und Teilchenreservoir

siehe auch

  1. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, (Kap 5.2) {{#set:St7B=}}
  2. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung (5.4.5) (S 45) {{#set:St7B=(5.4.5)}}
  3. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.4.13 (Kap 5.4.3 S46) {{#set:St7B=5.4.13}}
  4. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung (5.5.7) (S 48) {{#set:St7B=(5.5.7)}}
  5. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.4.15 (S47) {{#set:St7B=5.4.15}}
  6. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 3.6.1 (S27) {{#set:St7B=3.6.1}}
  7. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 1.5.2 (S9) {{#set:St7B=1.5.2}}
  8. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.3.8 {{#set:St7B=5.3.8}}
  9. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 1.2.1 (S4) {{#set:St7B=1.2.1}}