Eichtransformation der Lagrangefunktion: Difference between revisions
*>SchuBot Einrückungen Mathematik |
|||
Line 133: | Line 133: | ||
Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art | Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art | ||
<math>L(q,\dot{q},t)\to L\acute{\ }(q,\dot{q},t)=L+\frac{d}{dt}\left( M(\bar{q},t) \right)</math> | <math>L(q,\dot{q},t)\to L\acute{\ }(q,\dot{q},t)=L+\frac{d}{dt}\left( M(\bar{q},t) \right)</math> mit <math>M(\bar{q},t)=M({{q}_{1}},...,{{q}_{f}},t)\in {{C}^{3}}</math> | ||
mit | |||
<math>M(\bar{q},t)=M({{q}_{1}},...,{{q}_{f}},t)\in {{C}^{3}}</math> | |||
beliebig. | beliebig. | ||
Line 142: | Line 140: | ||
& \frac{\partial L\acute{\ }}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L\acute{\ }}{\partial {{{\dot{q}}}_{k}}}=\frac{\partial L}{\partial {{q}_{k}}}+\frac{\partial }{\partial {{q}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right)-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{d}{dt}\frac{\partial }{\partial {{{\dot{q}}}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right) \\ | & \frac{\partial L\acute{\ }}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L\acute{\ }}{\partial {{{\dot{q}}}_{k}}}=\frac{\partial L}{\partial {{q}_{k}}}+\frac{\partial }{\partial {{q}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right)-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{d}{dt}\frac{\partial }{\partial {{{\dot{q}}}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right) \\ | ||
& =\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}+\frac{\partial }{\partial {{q}_{k}}}\frac{dM}{dt}-\frac{d}{dt}\frac{\partial M}{\partial {{q}_{k}}}=\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}} \\ | & =\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}+\frac{\partial }{\partial {{q}_{k}}}\frac{dM}{dt}-\frac{d}{dt}\frac{\partial M}{\partial {{q}_{k}}}=\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}} \\ | ||
\end{align}</math> | \end{align}</math> mit <math>\frac{\partial }{\partial {{{\dot{q}}}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right)=\frac{\partial M}{\partial {{q}_{k}}}</math> | ||
mit | |||
<math>\frac{\partial }{\partial {{{\dot{q}}}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right)=\frac{\partial M}{\partial {{q}_{k}}}</math> | |||
Revision as of 16:05, 12 September 2010
65px|Kein GFDL | Der Artikel Eichtransformation der Lagrangefunktion basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 3) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=3}} Kategorie:Mechanik __SHOWFACTBOX__
Uneindeutigkeit der Lagrangefunktion
Die Lagarangefunktion wird duch die Lagrangegleichung nicht eindeutig festgelegt.
Betrachten wir beispielsweise ein geladenes Teilchen im elektrischen Feld:
e sei die Ladung
Bewegungsgleichung:
Die Lorentzkraft{{#set:Fachbegriff=Lorentzkraft|Index=Lorentzkraft}} ist typischerweise nicht konservativ
Die Darstellung des elektrischen und magnetischen Feldes erfolgt über die Potenziale:
Dabei ist Skalar und A ein Vektorpotenzial (MKSA- System)
Ziel: Suche eine Lagrangefunktion in der Art, dass
Die Bewegungsgleichung
ergeben.
Ansatz:
Probe:
Weiter:
Somit:
Somit erfüllt unser Ansatz die Bewegungsgleichungen
Eichtransformationen
Die Potenziale lassen sich umeichen mit Hilfe der Eichfunktion{{#set:Fachbegriff=Eichfunktion|Index=Eichfunktion}} :
Durch Einsetzen sieht man schnell, dass sich die Felder nicht ändern:
Betrachten wir die Lagrangefunktion, so ergibt sich:
Einsetzen zeigt: L´ führt zu denselben Lagrangegleichungen wie L.
Die Eichtransformation
mit einer beliebigen Eichfunktion M (skalar) läßt die Lagrangegleichungen invariant. |
{{#set:Definition=Eichtransformation|Index=Eichtransformation}}
Allgemein gilt:
dann erfüllen die
das hamiltonsche Prinzip
Also:
Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art
mit
beliebig.
Einzige Nebenbedingung:
darf nicht explizit von
abhängen.
Beispiel: eindimensionaler Oszi
|