Das elektrochemische Potenzial: Difference between revisions
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Thermodynamik|4|6}}</noinclude> Betrachte Mischung geladener Teilchen in einem äußeren elektrostatischen Potenzial <math>\phi \left(…“ |
*>SchuBot Mathematik einrücken |
||
Line 7: | Line 7: | ||
Die räumlichen Teilchendichten seien | Die räumlichen Teilchendichten seien | ||
<math>{{n}_{i}}\left( {\bar{r}} \right)</math> | :<math>{{n}_{i}}\left( {\bar{r}} \right)</math> | ||
, das chemische Potenzial <math>{{\mu }_{i}}\left( {\bar{r}} \right)</math> | , das chemische Potenzial <math>{{\mu }_{i}}\left( {\bar{r}} \right)</math> | ||
Line 15: | Line 15: | ||
also ist die elektrochemische Arbeit | also ist die elektrochemische Arbeit | ||
<math>\delta {{W}_{e}}=\int_{{}}^{{}}{{{d}^{3}}r}\phi \left( {\bar{r}} \right)\sum\limits_{i}^{{}}{{}}{{e}_{i}}\delta {{n}_{i}}\left( {\bar{r}} \right)</math> | :<math>\delta {{W}_{e}}=\int_{{}}^{{}}{{{d}^{3}}r}\phi \left( {\bar{r}} \right)\sum\limits_{i}^{{}}{{}}{{e}_{i}}\delta {{n}_{i}}\left( {\bar{r}} \right)</math> | ||
'''Gibbsche Fundamentalgleichung''' | '''Gibbsche Fundamentalgleichung''' | ||
<math>\delta U=T\delta S-p\delta V+\delta {{W}_{e}}+\int_{{}}^{{}}{{{d}^{3}}r}\sum\limits_{i}^{{}}{{}}{{\mu }_{i}}\delta {{n}_{i}}\left( {\bar{r}} \right)</math> | :<math>\delta U=T\delta S-p\delta V+\delta {{W}_{e}}+\int_{{}}^{{}}{{{d}^{3}}r}\sum\limits_{i}^{{}}{{}}{{\mu }_{i}}\delta {{n}_{i}}\left( {\bar{r}} \right)</math> | ||
Thermodynamisches Gleichgewicht für festes T,p: | Thermodynamisches Gleichgewicht für festes T,p: | ||
Line 27: | Line 27: | ||
G = U- TS +pV | G = U- TS +pV | ||
<math>\delta G=-S\delta T+V\delta p+\int_{{}}^{{}}{{{d}^{3}}r}\sum\limits_{i}^{{}}{{}}\left( {{\mu }_{i}}+{{e}_{i}}\phi \left( {\bar{r}} \right) \right)\delta {{n}_{i}}\left( {\bar{r}} \right)=!=0</math> | :<math>\delta G=-S\delta T+V\delta p+\int_{{}}^{{}}{{{d}^{3}}r}\sum\limits_{i}^{{}}{{}}\left( {{\mu }_{i}}+{{e}_{i}}\phi \left( {\bar{r}} \right) \right)\delta {{n}_{i}}\left( {\bar{r}} \right)=!=0</math> | ||
'''Nebenbemerkung: '''<u>Keine chemische Reaktion -> </u><math>\delta {{N}_{i}}=\int_{{}}^{{}}{{{d}^{3}}r\delta {{n}_{i}}\left( {\bar{r}} \right)}=!=0</math> | '''Nebenbemerkung: '''<u>Keine chemische Reaktion -> </u><math>\delta {{N}_{i}}=\int_{{}}^{{}}{{{d}^{3}}r\delta {{n}_{i}}\left( {\bar{r}} \right)}=!=0</math> | ||
Line 35: | Line 35: | ||
: | : | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \int_{{}}^{{}}{{{d}^{3}}r}\sum\limits_{i}^{{}}{{}}\left( {{\mu }_{i}}\left( {\bar{r}} \right)+{{e}_{i}}\phi \left( {\bar{r}} \right)-{{\eta }_{i}} \right)\delta {{n}_{i}}\left( {\bar{r}} \right)=!=0 \\ | & \int_{{}}^{{}}{{{d}^{3}}r}\sum\limits_{i}^{{}}{{}}\left( {{\mu }_{i}}\left( {\bar{r}} \right)+{{e}_{i}}\phi \left( {\bar{r}} \right)-{{\eta }_{i}} \right)\delta {{n}_{i}}\left( {\bar{r}} \right)=!=0 \\ |
Revision as of 17:13, 12 September 2010
65px|Kein GFDL | Der Artikel Das elektrochemische Potenzial basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 6) der Thermodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=6}} Kategorie:Thermodynamik __SHOWFACTBOX__
Betrachte Mischung geladener Teilchen in einem äußeren elektrostatischen Potenzial
.
Die räumlichen Teilchendichten seien
,
also ist die elektrochemische Arbeit
Gibbsche Fundamentalgleichung
Thermodynamisches Gleichgewicht für festes T,p:
Minimum der Gibbschen freien Energie
G = U- TS +pV
Nebenbemerkung: Keine chemische Reaktion ->
Einführung des Lagrange- Parameters:
Ortsunabhängig !!! -> muss überall verschwinden !
Definition
der Teilchensorte i:
Im thermodynamischen Gleichgewicht ist
sind im Allgemeinen ortsabhängig !, ebenso wie die Teilchendichte
Anwendung
Elektronen in Festkörpern -> Elektrochemisches Potenzial = Ferminiveau !