Thermodynamischer Limes: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
Einrückungen Mathematik
*>SchuBot
m Interpunktion, replaced: ! → ! (2), ( → (
 
Line 3: Line 3:
Grenzfall eines unendlich großen Systems.
Grenzfall eines unendlich großen Systems.


Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren !
Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren!


<u>'''Voraussetzung:'''</u>
<u>'''Voraussetzung:'''</u>
Line 28: Line 28:
  \end{align}</math>
  \end{align}</math>
   
   
Definitionsgleichung der intensiven Variablen !!}}
Definitionsgleichung der intensiven Variablen!!}}


==Anwendung auf einfache thermische Systeme==
==Anwendung auf einfache thermische Systeme==
Line 102: Line 102:
====Folgerung====
====Folgerung====


Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.
Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.

Latest revision as of 23:56, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=6}} Kategorie:Thermodynamik __SHOWFACTBOX__


Grenzfall eines unendlich großen Systems.

Dabei muss der Grenzprozess α so durchgeführt werden, dass alle extensiven Makroobservablen MnαMn die gleiche Koordinatendiletation α erfahren!

Voraussetzung:

Homogenes Makrosystem, also z:=(M1,...,Mm) und S(z) sind extensiv: S(αz)=αS(z) eine homogene Funktion in allen Variablen!


Satz:

Die Entropiegrundfunktion
S(z)=n=1mgn(z)Mn

mit gn(z)=gn(αz) (dilatationsinvariant)

Beweis:

S(αz)=αS(z) damit:
S(αz)α=α(αS(z))=S(z)S(αz)α=nS(αz)(αMn)Mn
speziell für α=1:
nS(z)(Mn)Mn=S(z)gn(z):=S(z)(Mn)=S(αz)(αMn)=:gn(αz)

Definitionsgleichung der intensiven Variablen!!


Anwendung auf einfache thermische Systeme[edit | edit source]

S(U,V,N¯α)=SUU+SVV+SN¯αN¯α=1TU+pTVμαTN¯αSU=1TSV=pTSN¯α=μαT

Energiedarstellung:

U(S,V,N¯α)=TSpV+μαN¯α


Satz:

Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.

Beweis:

Fluktuations-Dissipations-Theorem{{#set:Fachbegriff=Fluktuations-Dissipations-Theorem|Index=Fluktuations-Dissipations-Theorem}}

(ΔMn)2=Mnλn=2Ψλn2

relative Schwankung:

(ΔMn)2Mn2=1Mn22Ψλn2

Wegen der Homogenität von

S=k(λnMnΨ)

gilt:

Ψ(αz)=αΨ(z) also 2Ψλn2(αz)=α2Ψλn2(z)

Relative Schwankung für αz, α:

limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn22Ψ(z)λn2<limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn2=0


Folgerung[edit | edit source]

Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.