Thermodynamischer Limes: Difference between revisions
No edit summary |
|||
Line 30: | Line 30: | ||
Definitionsgleichung der intensiven Variablen !!}} | Definitionsgleichung der intensiven Variablen !!}} | ||
==Anwendung auf einfache thermische Systeme== | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 43: | Line 43: | ||
\end{align}</math> | \end{align}</math> | ||
Energiedarstellung: | '''Energiedarstellung''': | ||
<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math> | <math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math> | ||
{{Satz|Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.| | |||
{{FB|Fluktuations-Dissipations-Theorem}} | |||
<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math> | <math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math> | ||
Line 69: | Line 68: | ||
<math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math> | <math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math> | ||
'''Relative Schwankung für '''<math>\alpha z</math> | '''Relative Schwankung für '''<math>\alpha z</math>, <math>\alpha \to \infty </math>: | ||
:<math>\begin{align} | |||
: | |||
<math>\begin{align} | |||
& \begin{matrix} | & \begin{matrix} | ||
Line 107: | Line 102: | ||
\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\ | \end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\ | ||
\end{align}</math> | \end{align}</math>}} | ||
====Folgerung==== | ====Folgerung==== | ||
Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden. | Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden. |
Revision as of 12:50, 12 September 2010
65px|Kein GFDL | Der Artikel Thermodynamischer Limes basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 6) der Thermodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=6}} Kategorie:Thermodynamik __SHOWFACTBOX__
Grenzfall eines unendlich großen Systems.
Dabei muss der Grenzprozess so durchgeführt werden, dass alle extensiven Makroobservablen die gleiche Koordinatendiletation erfahren !
Voraussetzung:
Homogenes Makrosystem, also und sind extensiv: eine homogene Funktion in allen Variablen!
Satz:
Die Entropiegrundfunktion |
Beweis:
speziell für :
Definitionsgleichung der intensiven Variablen !!
Anwendung auf einfache thermische Systeme
Energiedarstellung:
Satz:
Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen. |
Beweis:
Fluktuations-Dissipations-Theorem{{#set:Fachbegriff=Fluktuations-Dissipations-Theorem|Index=Fluktuations-Dissipations-Theorem}}
relative Schwankung:
Wegen der Homogenität von
gilt:
also
Folgerung
Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.