Zeitliche Translationsinvarianz: Difference between revisions
*>SchuBot Einrückungen Mathematik |
*>SchuBot m Interpunktion, replaced: ! → ! |
||
(One intermediate revision by the same user not shown) | |||
Line 8: | Line 8: | ||
# die Zwangsbedingungen die Zeit t nicht explizit enthalten: | # die Zwangsbedingungen die Zeit t nicht explizit enthalten: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& {{{\bar{r}}}_{i}}={{{\bar{r}}}_{i}}({{q}_{1}},...,{{q}_{f}}) \\ | & {{{\bar{r}}}_{i}}={{{\bar{r}}}_{i}}({{q}_{1}},...,{{q}_{f}}) \\ | ||
& \frac{\partial }{\partial t}{{{\bar{r}}}_{i}}=0\Rightarrow {{{\dot{\bar{r}}}}_{i}}=\sum\limits_{j}^{{}}{\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}{{{\dot{q}}}_{j}}_{{}}} \\ | & \frac{\partial }{\partial t}{{{\bar{r}}}_{i}}=0\Rightarrow {{{\dot{\bar{r}}}}_{i}}=\sum\limits_{j}^{{}}{\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}{{{\dot{q}}}_{j}}_{{}}} \\ | ||
Line 15: | Line 15: | ||
Dabei ist | Dabei ist | ||
<math>\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}</math> | :<math>\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}</math> | ||
Funktion von q1...qf | Funktion von q1...qf | ||
# | # | ||
<math>\frac{\partial }{\partial t}L=0</math> | :<math>\frac{\partial }{\partial t}L=0</math> | ||
# Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt '''NICHT '''automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten. | # Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt '''NICHT '''automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten. | ||
Line 26: | Line 26: | ||
<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math> | :<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math> | ||
Line 32: | Line 32: | ||
<math>T=\frac{1}{2}\sum\limits_{i}^{{}}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}=}\frac{1}{2}\sum\limits_{j,k}^{{}}{{{T}_{jk}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}}</math> Mit <math>{{T}_{jk}}=\sum\limits_{i=1}^{N}{{{m}_{i}}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{k}}} \right)}</math> | :<math>T=\frac{1}{2}\sum\limits_{i}^{{}}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}=}\frac{1}{2}\sum\limits_{j,k}^{{}}{{{T}_{jk}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}}</math> Mit <math>{{T}_{jk}}=\sum\limits_{i=1}^{N}{{{m}_{i}}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{k}}} \right)}</math> | ||
ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde. | ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde. | ||
T ist eine homogene quadratische Funktion der | T ist eine homogene quadratische Funktion der | ||
<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math> Also <math>T\left( \lambda {{{\dot{q}}}_{1}},...,\lambda {{{\dot{q}}}_{f}} \right)={{\lambda }^{2}}T\left( {{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}} \right)</math> Nach <math>\lambda </math> | :<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math> Also <math>T\left( \lambda {{{\dot{q}}}_{1}},...,\lambda {{{\dot{q}}}_{f}} \right)={{\lambda }^{2}}T\left( {{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}} \right)</math> Nach <math>\lambda </math> | ||
wird partiell abgelitten, dann wird | wird partiell abgelitten, dann wird | ||
<math>\lambda =1</math> | :<math>\lambda =1</math> | ||
gesetzt. | gesetzt. | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)} \right)\left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)}\left| _{\lambda =1} \right.=2\lambda T\left| _{\lambda =1} \right.\Leftrightarrow \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T \\ | & \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)} \right)\left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)}\left| _{\lambda =1} \right.=2\lambda T\left| _{\lambda =1} \right.\Leftrightarrow \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T \\ | ||
& \left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)={{{\dot{q}}}_{k}} \\ | & \left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)={{{\dot{q}}}_{k}} \\ | ||
Line 51: | Line 51: | ||
Da V unabhängig von | Da V unabhängig von | ||
<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math> | :<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math> | ||
gilt auch: | gilt auch: | ||
<math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math> | :<math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math> | ||
Line 61: | Line 61: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{\partial L}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}} \right)}+\frac{\partial L}{\partial t} \\ | & \frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{\partial L}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}} \right)}+\frac{\partial L}{\partial t} \\ | ||
& \frac{\partial L}{\partial {{q}_{k}}}=\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\ und\ \frac{\partial L}{\partial t}=0\quad wegen\ 2.(oben) \\ | & \frac{\partial L}{\partial {{q}_{k}}}=\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\ und\ \frac{\partial L}{\partial t}=0\quad wegen\ 2.(oben) \\ | ||
Line 70: | Line 70: | ||
<math>\frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}} \right)}=\frac{d}{dt}\sum\limits_{k}^{{}}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}}=2\frac{dT}{dt}}</math> wegen <math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math> | :<math>\frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}} \right)}=\frac{d}{dt}\sum\limits_{k}^{{}}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}}=2\frac{dT}{dt}}</math> wegen <math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math> | ||
Line 76: | Line 76: | ||
<math>0=\frac{d}{dt}(2T-L)=\frac{d}{dt}(T+V)\Rightarrow T+V=konst</math> | :<math>0=\frac{d}{dt}(2T-L)=\frac{d}{dt}(T+V)\Rightarrow T+V=konst</math> | ||
Zeitranslationsinvarianz bedingt also Energieerhaltung ! | Zeitranslationsinvarianz bedingt also Energieerhaltung! | ||
Oder: Skleronome Zwangsbedingungen: | Oder: Skleronome Zwangsbedingungen: | ||
<math>\frac{\partial L}{\partial t}=0</math> | :<math>\frac{\partial L}{\partial t}=0</math> | ||
bedingen: E=T+V=constant | bedingen: E=T+V=constant | ||
Line 90: | Line 90: | ||
Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung: | Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung: | ||
<math>{{q}_{k}}={{q}_{k}}(\tau ),t=t(\tau )</math> | :<math>{{q}_{k}}={{q}_{k}}(\tau ),t=t(\tau )</math> | ||
Line 96: | Line 96: | ||
<math>\bar{L}\left( {{q}_{k}},t,\frac{d{{q}_{k}}}{d\tau },\frac{d{{t}_{{}}}}{d\tau } \right):=L\left( {{q}_{k}},\frac{1}{\left( {}^{dt}\!\!\diagup\!\!{}_{d\tau }\; \right)}\frac{d{{q}_{k}}}{d\tau },t,\frac{dt}{d\tau } \right)</math> | :<math>\bar{L}\left( {{q}_{k}},t,\frac{d{{q}_{k}}}{d\tau },\frac{d{{t}_{{}}}}{d\tau } \right):=L\left( {{q}_{k}},\frac{1}{\left( {}^{dt}\!\!\diagup\!\!{}_{d\tau }\; \right)}\frac{d{{q}_{k}}}{d\tau },t,\frac{dt}{d\tau } \right)</math> | ||
Line 102: | Line 102: | ||
<math>{{h}^{s}}(\bar{q},t)=(\bar{q},t+s)</math> | :<math>{{h}^{s}}(\bar{q},t)=(\bar{q},t+s)</math> | ||
Line 108: | Line 108: | ||
# Hamiltonsches Prinzip auf | # Hamiltonsches Prinzip auf | ||
<math>\bar{L}</math> | :<math>\bar{L}</math> | ||
angewandt: | angewandt: | ||
<math>0=\delta \int\limits_{\tau 1}^{\tau 2}{{}}\bar{L}d\tau =\delta \int\limits_{t1}^{t2}{{}}Ldt\Leftrightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0</math> | :<math>0=\delta \int\limits_{\tau 1}^{\tau 2}{{}}\bar{L}d\tau =\delta \int\limits_{t1}^{t2}{{}}Ldt\Leftrightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0</math> | ||
2. Noethersches Theorem für | 2. Noethersches Theorem für | ||
<math>\bar{L}</math> | :<math>\bar{L}</math> | ||
: | : | ||
Line 122: | Line 122: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& I=\sum\limits_{i=1}^{f+1}{\frac{\partial L}{\partial {{{\dot{q}}}_{i}}}{{\left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)}_{s=0}}}=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}} \\ | & I=\sum\limits_{i=1}^{f+1}{\frac{\partial L}{\partial {{{\dot{q}}}_{i}}}{{\left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)}_{s=0}}}=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}} \\ | ||
& mit\ \left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)=\left( 0,...,0,1 \right)\quad f\ Nullen,1\ an\ Stelle\ f+1\ mit\ {{q}_{f+1}}=t \\ | & mit\ \left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)=\left( 0,...,0,1 \right)\quad f\ Nullen,1\ an\ Stelle\ f+1\ mit\ {{q}_{f+1}}=t \\ | ||
Line 129: | Line 129: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& I=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}}=\frac{\partial \bar{L}}{\partial \left( \frac{dt}{d\tau } \right)}=L+\sum\limits_{k=1}^{f}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\left( -\frac{1}{{{\left( \frac{dt}{d\tau } \right)}^{2}}} \right)\frac{d{{q}_{k}}}{d\tau }\frac{dt}{d\tau }} \\ | & I=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}}=\frac{\partial \bar{L}}{\partial \left( \frac{dt}{d\tau } \right)}=L+\sum\limits_{k=1}^{f}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\left( -\frac{1}{{{\left( \frac{dt}{d\tau } \right)}^{2}}} \right)\frac{d{{q}_{k}}}{d\tau }\frac{dt}{d\tau }} \\ | ||
& =L-\sum\limits_{k=1}^{f}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=T-V-2T=-(T-V) \\ | & =L-\sum\limits_{k=1}^{f}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=T-V-2T=-(T-V) \\ |
Latest revision as of 23:33, 12 September 2010
65px|Kein GFDL | Der Artikel Zeitliche Translationsinvarianz basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 3.Kapitels (Abschnitt 4) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=3|Abschnitt=4}} Kategorie:Mechanik __SHOWFACTBOX__
Die Zeit spielt in der klassischen Mechanik im Ggstz zur relativistischen Mechanik gegenüber dem Ort eine Sonderrolle.
Deshalb ist eine direkte Anwendung des Noether- Theorems nicht moeglich.
Zeitliche Translationsinvarianz ist erfüllt, falls:
- die Zwangsbedingungen die Zeit t nicht explizit enthalten:
Dabei ist
Funktion von q1...qf
- Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt NICHT automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten.
Wenn die Zwangsbedingungen die Zeit enthalten, so ist die Energie nicht enthalten.
Kinetische Energie:
ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.
T ist eine homogene quadratische Funktion der
wird partiell abgelitten, dann wird
gesetzt.
Obere Äquivalenz ist der sogenannte Eulersche Satz
Da V unabhängig von
gilt auch:
Zur totalen Zeitableitung von L:
Somit:
Somit:
Zeitranslationsinvarianz bedingt also Energieerhaltung!
Oder: Skleronome Zwangsbedingungen:
bedingen: E=T+V=constant
Nebenbemerkung
Die Aussage folgt auch aus dem Noether-Theorem, wenn man noch den folgenden Trick anwendet: (Scheck, Aufgabe 2.17)
Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung:
Als Lagrangefunktion muss man sich definieren:
soll invariant unter Zeittranslationen sein:
Dann gilt:
- Hamiltonsches Prinzip auf
angewandt:
2. Noethersches Theorem für
Integral der Bewegung I:
Also Erhaltung der Energie durch zeitliche Translationsinvarianz