Zeitliche Translationsinvarianz: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Mechanik|3|4}}</noinclude> Die Zeit spielt in der klassischen Mechanik im Ggstz zur relativistischen Mechanik gegenüber dem Ort eine S…“
 
*>SchuBot
m Interpunktion, replaced: ! → !
 
(2 intermediate revisions by the same user not shown)
Line 8: Line 8:
# die Zwangsbedingungen die Zeit t nicht explizit enthalten:
# die Zwangsbedingungen die Zeit t nicht explizit enthalten:


<math>\begin{align}
:<math>\begin{align}
   & {{{\bar{r}}}_{i}}={{{\bar{r}}}_{i}}({{q}_{1}},...,{{q}_{f}}) \\
   & {{{\bar{r}}}_{i}}={{{\bar{r}}}_{i}}({{q}_{1}},...,{{q}_{f}}) \\
  & \frac{\partial }{\partial t}{{{\bar{r}}}_{i}}=0\Rightarrow {{{\dot{\bar{r}}}}_{i}}=\sum\limits_{j}^{{}}{\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}{{{\dot{q}}}_{j}}_{{}}} \\
  & \frac{\partial }{\partial t}{{{\bar{r}}}_{i}}=0\Rightarrow {{{\dot{\bar{r}}}}_{i}}=\sum\limits_{j}^{{}}{\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}{{{\dot{q}}}_{j}}_{{}}} \\
Line 15: Line 15:


Dabei ist
Dabei ist
<math>\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}</math>
:<math>\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}</math>
Funktion von q1...qf
Funktion von q1...qf


#
#
<math>\frac{\partial }{\partial t}L=0</math>
:<math>\frac{\partial }{\partial t}L=0</math>


# Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt '''NICHT '''automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten.
# Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt '''NICHT '''automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten.
Line 26: Line 26:




<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>
:<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>




Line 32: Line 32:




<math>T=\frac{1}{2}\sum\limits_{i}^{{}}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}=}\frac{1}{2}\sum\limits_{j,k}^{{}}{{{T}_{jk}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}}</math>
:<math>T=\frac{1}{2}\sum\limits_{i}^{{}}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}=}\frac{1}{2}\sum\limits_{j,k}^{{}}{{{T}_{jk}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}}</math> Mit <math>{{T}_{jk}}=\sum\limits_{i=1}^{N}{{{m}_{i}}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{k}}} \right)}</math>
 
 
Mit
 
 
<math>{{T}_{jk}}=\sum\limits_{i=1}^{N}{{{m}_{i}}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{k}}} \right)}</math>
ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.
ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.


T ist eine homogene quadratische Funktion der
T ist eine homogene quadratische Funktion der
<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math>
:<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math> Also <math>T\left( \lambda {{{\dot{q}}}_{1}},...,\lambda {{{\dot{q}}}_{f}} \right)={{\lambda }^{2}}T\left( {{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}} \right)</math> Nach <math>\lambda </math>
 
 
Also
<math>T\left( \lambda {{{\dot{q}}}_{1}},...,\lambda {{{\dot{q}}}_{f}} \right)={{\lambda }^{2}}T\left( {{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}} \right)</math>
 
 
Nach
<math>\lambda </math>
wird partiell abgelitten, dann wird
wird partiell abgelitten, dann wird
<math>\lambda =1</math>
:<math>\lambda =1</math>
gesetzt.
gesetzt.




<math>\begin{align}
:<math>\begin{align}
   & \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)} \right)\left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)}\left| _{\lambda =1} \right.=2\lambda T\left| _{\lambda =1} \right.\Leftrightarrow \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T \\
   & \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)} \right)\left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)}\left| _{\lambda =1} \right.=2\lambda T\left| _{\lambda =1} \right.\Leftrightarrow \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T \\
  & \left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)={{{\dot{q}}}_{k}} \\
  & \left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)={{{\dot{q}}}_{k}} \\
Line 65: Line 51:


Da V unabhängig von
Da V unabhängig von
<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math>
:<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math>
gilt auch:
gilt auch:




<math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math>
:<math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math>




Line 75: Line 61:




<math>\begin{align}
:<math>\begin{align}
   & \frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{\partial L}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}} \right)}+\frac{\partial L}{\partial t} \\
   & \frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{\partial L}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}} \right)}+\frac{\partial L}{\partial t} \\
  & \frac{\partial L}{\partial {{q}_{k}}}=\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\ und\ \frac{\partial L}{\partial t}=0\quad wegen\ 2.(oben) \\
  & \frac{\partial L}{\partial {{q}_{k}}}=\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\ und\ \frac{\partial L}{\partial t}=0\quad wegen\ 2.(oben) \\
Line 84: Line 70:




<math>\frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}} \right)}=\frac{d}{dt}\sum\limits_{k}^{{}}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}}=2\frac{dT}{dt}}</math>
:<math>\frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}} \right)}=\frac{d}{dt}\sum\limits_{k}^{{}}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}}=2\frac{dT}{dt}}</math> wegen <math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math>
wegen
<math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math>




Line 92: Line 76:




<math>0=\frac{d}{dt}(2T-L)=\frac{d}{dt}(T+V)\Rightarrow T+V=konst</math>
:<math>0=\frac{d}{dt}(2T-L)=\frac{d}{dt}(T+V)\Rightarrow T+V=konst</math>




Zeitranslationsinvarianz bedingt also Energieerhaltung !
Zeitranslationsinvarianz bedingt also Energieerhaltung!


Oder: Skleronome Zwangsbedingungen:
Oder: Skleronome Zwangsbedingungen:
<math>\frac{\partial L}{\partial t}=0</math>
:<math>\frac{\partial L}{\partial t}=0</math>
bedingen: E=T+V=constant
bedingen: E=T+V=constant


Line 106: Line 90:


Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung:
Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung:
<math>{{q}_{k}}={{q}_{k}}(\tau ),t=t(\tau )</math>
:<math>{{q}_{k}}={{q}_{k}}(\tau ),t=t(\tau )</math>




Line 112: Line 96:




<math>\bar{L}\left( {{q}_{k}},t,\frac{d{{q}_{k}}}{d\tau },\frac{d{{t}_{{}}}}{d\tau } \right):=L\left( {{q}_{k}},\frac{1}{\left( {}^{dt}\!\!\diagup\!\!{}_{d\tau }\; \right)}\frac{d{{q}_{k}}}{d\tau },t,\frac{dt}{d\tau } \right)</math>
:<math>\bar{L}\left( {{q}_{k}},t,\frac{d{{q}_{k}}}{d\tau },\frac{d{{t}_{{}}}}{d\tau } \right):=L\left( {{q}_{k}},\frac{1}{\left( {}^{dt}\!\!\diagup\!\!{}_{d\tau }\; \right)}\frac{d{{q}_{k}}}{d\tau },t,\frac{dt}{d\tau } \right)</math>




Line 118: Line 102:




<math>{{h}^{s}}(\bar{q},t)=(\bar{q},t+s)</math>
:<math>{{h}^{s}}(\bar{q},t)=(\bar{q},t+s)</math>




Line 124: Line 108:


# Hamiltonsches Prinzip auf
# Hamiltonsches Prinzip auf
<math>\bar{L}</math>
:<math>\bar{L}</math>
  angewandt:
  angewandt:




<math>0=\delta \int\limits_{\tau 1}^{\tau 2}{{}}\bar{L}d\tau =\delta \int\limits_{t1}^{t2}{{}}Ldt\Leftrightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0</math>
:<math>0=\delta \int\limits_{\tau 1}^{\tau 2}{{}}\bar{L}d\tau =\delta \int\limits_{t1}^{t2}{{}}Ldt\Leftrightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0</math>




2. Noethersches Theorem für
2. Noethersches Theorem für
<math>\bar{L}</math>
:<math>\bar{L}</math>
:
:


Line 138: Line 122:




<math>\begin{align}
:<math>\begin{align}
   & I=\sum\limits_{i=1}^{f+1}{\frac{\partial L}{\partial {{{\dot{q}}}_{i}}}{{\left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)}_{s=0}}}=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}} \\
   & I=\sum\limits_{i=1}^{f+1}{\frac{\partial L}{\partial {{{\dot{q}}}_{i}}}{{\left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)}_{s=0}}}=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}} \\
  & mit\ \left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)=\left( 0,...,0,1 \right)\quad f\ Nullen,1\ an\ Stelle\ f+1\ mit\ {{q}_{f+1}}=t \\
  & mit\ \left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)=\left( 0,...,0,1 \right)\quad f\ Nullen,1\ an\ Stelle\ f+1\ mit\ {{q}_{f+1}}=t \\
Line 145: Line 129:




<math>\begin{align}
:<math>\begin{align}
   & I=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}}=\frac{\partial \bar{L}}{\partial \left( \frac{dt}{d\tau } \right)}=L+\sum\limits_{k=1}^{f}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\left( -\frac{1}{{{\left( \frac{dt}{d\tau } \right)}^{2}}} \right)\frac{d{{q}_{k}}}{d\tau }\frac{dt}{d\tau }} \\
   & I=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}}=\frac{\partial \bar{L}}{\partial \left( \frac{dt}{d\tau } \right)}=L+\sum\limits_{k=1}^{f}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}\left( -\frac{1}{{{\left( \frac{dt}{d\tau } \right)}^{2}}} \right)\frac{d{{q}_{k}}}{d\tau }\frac{dt}{d\tau }} \\
  & =L-\sum\limits_{k=1}^{f}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=T-V-2T=-(T-V) \\
  & =L-\sum\limits_{k=1}^{f}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=T-V-2T=-(T-V) \\

Latest revision as of 00:33, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=3|Abschnitt=4}} Kategorie:Mechanik __SHOWFACTBOX__


Die Zeit spielt in der klassischen Mechanik im Ggstz zur relativistischen Mechanik gegenüber dem Ort eine Sonderrolle.

Deshalb ist eine direkte Anwendung des Noether- Theorems nicht moeglich.

Zeitliche Translationsinvarianz ist erfüllt, falls:

  1. die Zwangsbedingungen die Zeit t nicht explizit enthalten:
r¯i=r¯i(q1,...,qf)tr¯i=0r¯˙i=jqjr¯iq˙j


Dabei ist

qjr¯i

Funktion von q1...qf

tL=0
  1. Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt NICHT automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten.

Wenn die Zwangsbedingungen die Zeit enthalten, so ist die Energie nicht enthalten.


r¯i=r¯i(q1,...,qf,t)


Kinetische Energie:


T=12imir¯˙i2=12j,kTjkq˙jq˙k Mit Tjk=i=1Nmi(r¯iqj)(r¯iqk)

ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.

T ist eine homogene quadratische Funktion der

q˙1...q˙f Also T(λq˙1,...,λq˙f)=λ2T(q˙1,...,q˙f) Nach λ

wird partiell abgelitten, dann wird

λ=1

gesetzt.


k=1N(T(λq˙k))((λq˙k)λ)|λ=1=2λT|λ=1k=1N(T(q˙k))q˙k=2T((λq˙k)λ)=q˙k


Obere Äquivalenz ist der sogenannte Eulersche Satz

Da V unabhängig von

q˙1...q˙f

gilt auch:


k=1N(L(q˙k))q˙k=2T


Zur totalen Zeitableitung von L:


dLdt=k(Lq˙kq¨k+Lqkq˙k)+LtLqk=ddtLq˙kundLt=0wegen2.(oben)


Somit:


dLdt=k(Lq˙kq¨k+ddtLq˙kq˙k)=ddtkLq˙kq˙k=2dTdt wegen k=1N(L(q˙k))q˙k=2T


Somit:


0=ddt(2TL)=ddt(T+V)T+V=konst


Zeitranslationsinvarianz bedingt also Energieerhaltung!

Oder: Skleronome Zwangsbedingungen:

Lt=0

bedingen: E=T+V=constant

Nebenbemerkung

Die Aussage folgt auch aus dem Noether-Theorem, wenn man noch den folgenden Trick anwendet: (Scheck, Aufgabe 2.17)

Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung:

qk=qk(τ),t=t(τ)


Als Lagrangefunktion muss man sich definieren:


L¯(qk,t,dqkdτ,dtdτ):=L(qk,1(dtdτ)dqkdτ,t,dtdτ)


soll invariant unter Zeittranslationen sein:


hs(q¯,t)=(q¯,t+s)


Dann gilt:

  1. Hamiltonsches Prinzip auf
L¯
angewandt:


0=δτ1τ2L¯dτ=δt1t2LdtddtLq˙kLqk=0


2. Noethersches Theorem für

L¯

Integral der Bewegung I:


I=i=1f+1Lq˙i(ddshs(q1,...,qf+1))s=0=L¯q˙f+1mit(ddshs(q1,...,qf+1))=(0,...,0,1)fNullen,1anStellef+1mitqf+1=t


I=L¯q˙f+1=L¯(dtdτ)=L+k=1fLq˙k(1(dtdτ)2)dqkdτdtdτ=Lk=1f(L(q˙k))q˙k=TV2T=(TV)


Also Erhaltung der Energie durch zeitliche Translationsinvarianz