Bindungsenergien: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<noinclude>{{ScriptProf|Kapitel=3|Abschnitt=0|Prof=Prof. Dr. P. Zimmermann|Thema=Kern- und Strahlungsphysik|Schreiber=Moritz Schubotz}}</noinclude>
<noinclude>{{ScriptProf|Kapitel=3|Abschnitt=0|Prof=Prof. Dr. P. Zimmermann|Thema=Kern- und Strahlungsphysik|Schreiber=Moritz Schubotz}}</noinclude>
==Bindungsenergie==
[[Datei:Bindungsenergie8.png|miniatur|zentriert|hochkant=3|Bindungsenergie]]
[[Datei:Bindungsenergie8.png|miniatur|zentriert|hochkant=3|Bindungsenergie]]
{{FB|Bindungsenergie}} <math>B = zm_pc^2 + Nm_nc^2 - M(Z, A)c^2</math>
{{FB|Bindungsenergie}} <math>B = Z m_pc^2 + N m_nc^2 - M(Z, A)c^2</math>
:<math>\begin{align}
:<math>\begin{align}
m_pc^2 &= 938,256 MeV \\
m_pc^2 &= 938,256 MeV \\
Line 10: Line 11:


Da man die Massenbestimmung mit atomphysikalischen Meßmethoden
Da man die Massenbestimmung mit atomphysikalischen Meßmethoden
({{FB|Massenspektrometer}}) durchführt, versteht man unter Mc² die Masse
({{FB|Massenspektrometer}}) durchführt, versteht man unter Mc² die '''Masse
des Atoms, d.h. man muß noch die Elektronenmassen abzüglich ihrer
des Atoms''', d.h. man muß noch die Elektronenmassen abzüglich ihrer
Bindungsenergien berücksichtigen. Deshalb bezieht man die
Bindungsenergien berücksichtigen. Deshalb bezieht man die
{{FB|Masseneinheit}} 1 <math>m_u</math> auf 1/12 der Masse des neutralen <math>C^{12}</math>-Atoms.
{{FB|Masseneinheit}} 1 <math>m_u</math> auf 1/12 der Masse des neutralen <math>C^{12}</math>-Atoms.
:<math>m_uc^2 = 931,478MeV</math>


<math>m_uc^2 = 931,478MeV</math>
{{AnMS|Oftmals wird die Wasserstoffmasse statt der Protonenmasse zur Berechnung der Binduungsenergie verwendet, da so die Elektronenmassen implizit berücksichtigt werden.
:<math>B=(Z m_H+N m_m-m_A)c^2</math>{{Quelle|BS|Gl. 4.7}} }}


==Massenspektrometrie==
Prinzip der {{FB|Massenspektrometrie}}: Durch die Messung der '''Energie''' <math>E =
\frac{1}{2}mv^2</math> und des '''Impulses''' <math>p = mv</math> wird die Masse <math> m = p^2/2E</math> bestimmt.


Prinzip der Massenspektrometrie: Durch die Messung der Energie <math>E =
\frac{1}{2}mv^2</math> und des Impulses <math>p = mv</math> wird die Masse <math> m = p^2/2E</math> bestimmt.




 
Prinzipieller Aufbau eines Energie und {{FB|Impulsfilter}}s in einem [[Experiment::Massenspektrographen]] durch elektrische bzw. magnetische Felder:
Prinzipieller Aufbau eines Energie und {{FB|Impulsfilter}}s in einem Massenspektrographen durch elektrische bzw. magnetische Felder:


[[Datei:Energie_Impuls_Filter10.png|miniatur|zentriert|hochkant=3|Massenspektrographen Energie und Impulsfilter]]
[[Datei:Energie_Impuls_Filter10.png|miniatur|zentriert|hochkant=3|Massenspektrographen Energie und Impulsfilter]]


;el. Feld: <math>\frac{mv^2}{r}=e E \to E_k= \frac{1}{2}mv^2=e r E </math>·{{FB|Energiemessung}}
;el. Feld: <math>\frac{mv^2}{r}=e E \to E_k= \frac{1}{2}mv^2=\frac{1}{2} e r E </math>·{{FB|Energiemessung}}
;magn. Feld: <math>\frac{mv^2}{r}=e v B \to p=mv=e r B</math> {{FB|Impulsmessung}}
;magn. Feld: <math>\frac{mv^2}{r}=e v B \to p=mv=e r B</math> {{FB|Impulsmessung}}


 
==Bindungsenergie pro Nukleon==
Ergebnis für Bindungsenergie pro Nukleon B/A
Ergebnis für Bindungsenergie pro Nukleon B/A


Line 42: Line 45:
;Helium: <math>d + d \to \alpha + 24 MeV, B(\alpha) = 28 MeV, B/A = 7 MeV</math>
;Helium: <math>d + d \to \alpha + 24 MeV, B(\alpha) = 28 MeV, B/A = 7 MeV</math>


==siehe auch==
==Ergänzende Informationen==
(gehört nicht zum Skript)
 
[[Tröpfchenmodell,_Weizsäckersche_Massenformel|nächstes Kapitel]]
[[Tröpfchenmodell,_Weizsäckersche_Massenformel|nächstes Kapitel]]
[[File:Auftragung Bindungsenergie gegen Massenzahl.svg|thumb|Auftragung Bindungsenergie gegen Massenzahl]]
===merken===
Idee: Zentripetalkraft = Lorentzkraft
merke Spektrograph erzeugt Bild
Auflösungsvermögen absoulute Massenbestimmung (bekannte Radien, E und B Felder, Ladung (5-Größen)) <math>\frac{\Delta m}{ m} =10^{-4}</math>
Ladung muss bekannt sein und ungleich 0 sein --> Neutronenmasse nicht bestimmbar (Umweg Deuteriumkern, Bindungsenergie)
===Prüngsfragen===
* Massenspektrometer (hier etwas genauer, mit Skizze und Funktionsweise.
* Was ist der Hauptanteil der relativ kleinen Fehler? -> inhomogenitäten an den Rändern der Felder)
Häufigkeit:2
===Quellen===
<references />

Latest revision as of 14:11, 27 August 2011

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::3Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=3|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__

Bindungsenergie[edit | edit source]

miniatur|zentriert|hochkant=3|Bindungsenergie Bindungsenergie{{#set:Fachbegriff=Bindungsenergie|Index=Bindungsenergie}}


Da man die Massenbestimmung mit atomphysikalischen Meßmethoden (Massenspektrometer{{#set:Fachbegriff=Massenspektrometer|Index=Massenspektrometer}}) durchführt, versteht man unter Mc² die Masse des Atoms, d.h. man muß noch die Elektronenmassen abzüglich ihrer Bindungsenergien berücksichtigen. Deshalb bezieht man die Masseneinheit{{#set:Fachbegriff=Masseneinheit|Index=Masseneinheit}} 1 auf 1/12 der Masse des neutralen -Atoms.

ANMERKUNG Schubotz: Oftmals wird die Wasserstoffmasse statt der Protonenmasse zur Berechnung der Binduungsenergie verwendet, da so die Elektronenmassen implizit berücksichtigt werden.
[1]

Massenspektrometrie[edit | edit source]

Prinzip der Massenspektrometrie{{#set:Fachbegriff=Massenspektrometrie|Index=Massenspektrometrie}}: Durch die Messung der Energie und des Impulses wird die Masse bestimmt.


Prinzipieller Aufbau eines Energie und Impulsfilter{{#set:Fachbegriff=Impulsfilter|Index=Impulsfilter}}s in einem Experiment::Massenspektrographen durch elektrische bzw. magnetische Felder:

miniatur|zentriert|hochkant=3|Massenspektrographen Energie und Impulsfilter

el. Feld
·Energiemessung{{#set:Fachbegriff=Energiemessung|Index=Energiemessung}}
magn. Feld
Impulsmessung{{#set:Fachbegriff=Impulsmessung|Index=Impulsmessung}}

Bindungsenergie pro Nukleon[edit | edit source]

Ergebnis für Bindungsenergie pro Nukleon B/A

miniatur|zentriert|hochkant=3|Bethe-Weizäcker-Formel Im Mittel , d.h. ~ 1% der Ruhemasse

Maximum bei ca. (Eisen), danach wegen wachsender Coulombabstoßung{{#set:Fachbegriff=Coulombabstoßung|Index=Coulombabstoßung}} Abnahme um ca. 1 MeV auf bei . Größere Unregelmäßigkeiten bei leichten Kernen bis , besonders ausgeprägt bei:

Deuterium
Helium

Ergänzende Informationen[edit | edit source]

(gehört nicht zum Skript)

nächstes Kapitel

Auftragung Bindungsenergie gegen Massenzahl

merken[edit | edit source]

Idee: Zentripetalkraft = Lorentzkraft

merke Spektrograph erzeugt Bild

Auflösungsvermögen absoulute Massenbestimmung (bekannte Radien, E und B Felder, Ladung (5-Größen))

Ladung muss bekannt sein und ungleich 0 sein --> Neutronenmasse nicht bestimmbar (Umweg Deuteriumkern, Bindungsenergie)

Prüngsfragen[edit | edit source]

  • Massenspektrometer (hier etwas genauer, mit Skizze und Funktionsweise.
  • Was ist der Hauptanteil der relativ kleinen Fehler? -> inhomogenitäten an den Rändern der Felder)

Häufigkeit:2

Quellen[edit | edit source]

  1. Bergmann-Schaefer: Lehrbuch der Experimentalphysik, Band 4: Bestandteile der Materie. 2. Auflage 2003, ISBN 978-3-11-016800-6 Gl. 4.7