Thermodynamischer Limes: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
*>SchuBot
m Interpunktion, replaced: ! → ! (2), ( → (
 
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
Grenzfall eines unendlich großen Systems.
Grenzfall eines unendlich großen Systems.


Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren !
Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren!


<u>'''Voraussetzung:'''</u>
<u>'''Voraussetzung:'''</u>
Line 12: Line 12:
:<math>S(z)=\sum\limits_{n=1}^{m}{{}}{{g}_{n}}(z)\left\langle {{M}^{n}} \right\rangle </math>
:<math>S(z)=\sum\limits_{n=1}^{m}{{}}{{g}_{n}}(z)\left\langle {{M}^{n}} \right\rangle </math>
mit <math>{{g}_{n}}(z)={{g}_{n}}(\alpha z)</math> (dilatationsinvariant)|
mit <math>{{g}_{n}}(z)={{g}_{n}}(\alpha z)</math> (dilatationsinvariant)|
<math>S(\alpha z)=\alpha S(z)</math> damit:
:<math>S(\alpha z)=\alpha S(z)</math> damit:


:<math>\begin{align}
:<math>\begin{align}
Line 28: Line 28:
  \end{align}</math>
  \end{align}</math>
   
   
Definitionsgleichung der intensiven Variablen !!}}
Definitionsgleichung der intensiven Variablen!!}}


====Anwendung auf einfache thermische Systeme====
==Anwendung auf einfache thermische Systeme==
<math>\begin{align}
:<math>\begin{align}


& S\left( U,V,{{{\bar{N}}}^{\alpha }} \right)=\frac{\partial S}{\partial U}U+\frac{\partial S}{\partial V}V+\frac{\partial S}{\partial {{{\bar{N}}}^{\alpha }}}{{{\bar{N}}}^{\alpha }}=\frac{1}{T}U+\frac{p}{T}V-\frac{{{\mu }_{\alpha }}}{T}{{{\bar{N}}}^{\alpha }} \\
& S\left( U,V,{{{\bar{N}}}^{\alpha }} \right)=\frac{\partial S}{\partial U}U+\frac{\partial S}{\partial V}V+\frac{\partial S}{\partial {{{\bar{N}}}^{\alpha }}}{{{\bar{N}}}^{\alpha }}=\frac{1}{T}U+\frac{p}{T}V-\frac{{{\mu }_{\alpha }}}{T}{{{\bar{N}}}^{\alpha }} \\
Line 43: Line 43:
\end{align}</math>
\end{align}</math>


Energiedarstellung:
'''Energiedarstellung''':
 
<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math>


'''Satz: '''Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.
:<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math>


<u>'''Beweis: '''</u>Fluktuations - Dissipations- Theorem
{{Satz|Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.|
{{FB|Fluktuations-Dissipations-Theorem}}


<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>
:<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>


relative Schwankung:
relative Schwankung:


<math>\frac{\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}=-\frac{1}{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>
:<math>\frac{\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}=-\frac{1}{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>


Wegen der Homogenität von
Wegen der Homogenität von


<math>S=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>
:<math>S=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>


gilt:
gilt:


<math>\Psi \left( \alpha z \right)=\alpha \Psi \left( z \right)</math>
:<math>\Psi \left( \alpha z \right)=\alpha \Psi \left( z \right)</math> also <math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math>


also
'''Relative Schwankung für '''<math>\alpha z</math>, <math>\alpha \to \infty </math>:


<math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math>
:<math>\begin{align}
 
'''Relative Schwankung für '''<math>\alpha z</math>
 
, <math>\alpha \to \infty </math>
 
:
 
<math>\begin{align}


& \begin{matrix}
& \begin{matrix}
Line 107: Line 98:
\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\
\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\


\end{align}</math>
\end{align}</math>}}


====Folgerung====
====Folgerung====


Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.
Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.

Latest revision as of 00:56, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=6}} Kategorie:Thermodynamik __SHOWFACTBOX__


Grenzfall eines unendlich großen Systems.

Dabei muss der Grenzprozess α so durchgeführt werden, dass alle extensiven Makroobservablen MnαMn die gleiche Koordinatendiletation α erfahren!

Voraussetzung:

Homogenes Makrosystem, also z:=(M1,...,Mm) und S(z) sind extensiv: S(αz)=αS(z) eine homogene Funktion in allen Variablen!


Satz:

Die Entropiegrundfunktion
S(z)=n=1mgn(z)Mn

mit gn(z)=gn(αz) (dilatationsinvariant)

Beweis:

S(αz)=αS(z) damit:
S(αz)α=α(αS(z))=S(z)S(αz)α=nS(αz)(αMn)Mn
speziell für α=1:
nS(z)(Mn)Mn=S(z)gn(z):=S(z)(Mn)=S(αz)(αMn)=:gn(αz)

Definitionsgleichung der intensiven Variablen!!


Anwendung auf einfache thermische Systeme[edit | edit source]

S(U,V,N¯α)=SUU+SVV+SN¯αN¯α=1TU+pTVμαTN¯αSU=1TSV=pTSN¯α=μαT

Energiedarstellung:

U(S,V,N¯α)=TSpV+μαN¯α


Satz:

Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.

Beweis:

Fluktuations-Dissipations-Theorem{{#set:Fachbegriff=Fluktuations-Dissipations-Theorem|Index=Fluktuations-Dissipations-Theorem}}

(ΔMn)2=Mnλn=2Ψλn2

relative Schwankung:

(ΔMn)2Mn2=1Mn22Ψλn2

Wegen der Homogenität von

S=k(λnMnΨ)

gilt:

Ψ(αz)=αΨ(z) also 2Ψλn2(αz)=α2Ψλn2(z)

Relative Schwankung für αz, α:

limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn22Ψ(z)λn2<limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn2=0


Folgerung[edit | edit source]

Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.