Kanonische Transformationen: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
Einrückungen Mathematik
 
(2 intermediate revisions by one other user not shown)
Line 3: Line 3:




Wir wissen bereits, dass die Wahl der verallgemeinerten Koordinaten nicht eindeutig ist ( Kapitel 2.4: Forminvarianz der Lagrangegleichungen).
Wir wissen bereits, dass die Wahl der verallgemeinerten Koordinaten nicht eindeutig ist (Kapitel 2.4: Forminvarianz der Lagrangegleichungen).


Dabei haben wir gesehen, dass die Lagrangegleichungen 2. Art forminvariant  bleiben unter beliebigen diffeomorphen Transformationen der Koordinaten:
Dabei haben wir gesehen, dass die Lagrangegleichungen 2. Art forminvariant  bleiben unter beliebigen diffeomorphen Transformationen der Koordinaten:




<math>\bar{q}=({{q}_{1}},...,{{q}_{f}})\to \bar{Q}=({{Q}_{1}},...,{{Q}_{f}})</math>
:<math>\bar{q}=({{q}_{1}},...,{{q}_{f}})\to \bar{Q}=({{Q}_{1}},...,{{Q}_{f}})</math>




Line 14: Line 14:




<math>\bar{L}(\bar{Q},\dot{\bar{Q}},t)=L(\bar{q}(\bar{Q},t),\dot{\bar{q}}(\bar{Q},\dot{\bar{Q}},t),t)</math>
:<math>\bar{L}(\bar{Q},\dot{\bar{Q}},t)=L(\bar{q}(\bar{Q},t),\dot{\bar{q}}(\bar{Q},\dot{\bar{Q}},t),t)</math>




Nun kann man sich fragen, unter welchen Transformationen  
Nun kann man sich fragen, unter welchen Transformationen  
<math>(\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right)</math>
:<math>(\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right)</math>




Line 24: Line 24:


mit  
mit  
<math>\begin{align}
:<math>\begin{align}
   & {{{\dot{p}}}_{k}}=-\frac{\partial H}{\partial {{q}_{k}}} \\  
   & {{{\dot{p}}}_{k}}=-\frac{\partial H}{\partial {{q}_{k}}} \\  
  & {{{\dot{q}}}_{k}}=\frac{\partial H}{\partial {{p}_{k}}} \\  
  & {{{\dot{q}}}_{k}}=\frac{\partial H}{\partial {{p}_{k}}} \\  
\end{align}</math>
\end{align}</math>
soll auch
soll auch
<math>\begin{align}
:<math>\begin{align}
   & {{{\dot{P}}}_{k}}=-\frac{\partial \bar{H}}{\partial {{Q}_{k}}} \\  
   & {{{\dot{P}}}_{k}}=-\frac{\partial \bar{H}}{\partial {{Q}_{k}}} \\  
  & {{{\dot{Q}}}_{k}}=\frac{\partial \bar{H}}{\partial {{P}_{k}}} \\  
  & {{{\dot{Q}}}_{k}}=\frac{\partial \bar{H}}{\partial {{P}_{k}}} \\  
\end{align}</math>
\end{align}</math>
  gelten !
  gelten!


Nebenbemerkungen:
Nebenbemerkungen:
Line 43: Line 43:




<math>\frac{\partial L}{\partial {{q}_{j}}}=0\Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{j}}}=\frac{d}{dt}{{p}_{j}}=0\Rightarrow {{p}_{j}}=\frac{\partial L}{\partial {{{\dot{q}}}_{j}}}=const</math>
:<math>\frac{\partial L}{\partial {{q}_{j}}}=0\Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{j}}}=\frac{d}{dt}{{p}_{j}}=0\Rightarrow {{p}_{j}}=\frac{\partial L}{\partial {{{\dot{q}}}_{j}}}=const</math>




Allerdings ist damit keine Aussage über  
Allerdings ist damit keine Aussage über  
<math>{{\dot{q}}_{j}}</math>
:<math>{{\dot{q}}_{j}}</math>
gemacht. Diese muss natürlich weiter als Variable behandelt werden.
gemacht. Diese muss natürlich weiter als Variable behandelt werden.


Line 53: Line 53:


In  
In  
<math>H({{q}_{1}},...,{{q}_{f}},{{p}_{1}},...,{{p}_{f}},t)</math>
:<math>H({{q}_{1}},...,{{q}_{f}},{{p}_{1}},...,{{p}_{f}},t)</math>
heißt  
heißt  
<math>{{q}_{j}}</math>
:<math>{{q}_{j}}</math>
zyklisch, wenn
zyklisch, wenn




<math>\frac{\partial H}{\partial {{q}_{j}}}=0\Rightarrow -\frac{\partial L}{\partial {{q}_{j}}}=\frac{d}{dt}{{p}_{j}}=0\Rightarrow {{p}_{j}}:={{\alpha }_{j}}=const</math>
:<math>\frac{\partial H}{\partial {{q}_{j}}}=0\Rightarrow -\frac{\partial L}{\partial {{q}_{j}}}=\frac{d}{dt}{{p}_{j}}=0\Rightarrow {{p}_{j}}:={{\alpha }_{j}}=const</math>




Das bedeutet nun, dass  
Das bedeutet nun, dass  
<math>{{q}_{j}}</math>
:<math>{{q}_{j}}</math>
in H gar nicht auftritt.  
in H gar nicht auftritt.  
<math>{{p}_{j}}</math>
:<math>{{p}_{j}}</math>
kann dagegen durch die Bewegungskonstante
kann dagegen durch die Bewegungskonstante




<math>{{\alpha }_{j}}</math>
:<math>{{\alpha }_{j}}</math>
ersetzt werden:
ersetzt werden:




<math>H({{q}_{1}},...,{{q}_{j-1}},{{q}_{j+1}},...,{{q}_{f}},{{p}_{1}},...,{{p}_{j-1}},{{\alpha }_{j}},{{p}_{j+1}},...,{{p}_{f}},t)</math>
:<math>H({{q}_{1}},...,{{q}_{j-1}},{{q}_{j+1}},...,{{q}_{f}},{{p}_{1}},...,{{p}_{j-1}},{{\alpha }_{j}},{{p}_{j+1}},...,{{p}_{f}},t)</math>




Line 79: Line 79:


Idee ist es nun, die Hamiltongleichungen zu lösen, indem man Schritt für Schritt zyklische Variablen durch geeignete Trafos der  
Idee ist es nun, die Hamiltongleichungen zu lösen, indem man Schritt für Schritt zyklische Variablen durch geeignete Trafos der  
<math>(\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right)</math>
:<math>(\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right)</math>
  einführt, bis alle  
  einführt, bis alle  
<math>\bar{Q}</math>
:<math>\bar{Q}</math>
zyklisch sind:
zyklisch sind:




<math>H=H({{P}_{1}},...,{{P}_{f}},t)</math> mit <math>{{P}_{k}}={{\alpha }_{k}}=const.</math>
:<math>H=H({{P}_{1}},...,{{P}_{f}},t)</math> mit <math>{{P}_{k}}={{\alpha }_{k}}=const.</math>






<math>\begin{align}
:<math>\begin{align}
   & {{{\dot{Q}}}_{k}}=\frac{\partial H}{\partial {{P}_{k}}}=:{{v}_{k}}(t) \\  
   & {{{\dot{Q}}}_{k}}=\frac{\partial H}{\partial {{P}_{k}}}=:{{v}_{k}}(t) \\  
  & \Rightarrow {{Q}_{k}}=\int\limits_{{{t}_{0}}}^{t}{{{v}_{k}}(t\acute{\ })dt\acute{\ }}+{{\beta }_{k}} \\  
  & \Rightarrow {{Q}_{k}}=\int\limits_{{{t}_{0}}}^{t}{{{v}_{k}}(t\acute{\ })dt\acute{\ }}+{{\beta }_{k}} \\  
Line 98: Line 98:




<math>{{\alpha }_{k}},{{\beta }_{k}}</math>
:<math>{{\alpha }_{k}},{{\beta }_{k}}</math>
k=1,...,f
k=1,...,f


Als Beispiel ( Vergl. Kapitel 3.5) betrachten wir das reduzierte 2-Körper-Problem in der Ebene senkrecht zum Drehimpuls l:
Als Beispiel (Vergl. Kapitel 3.5) betrachten wir das reduzierte 2-Körper-Problem in der Ebene senkrecht zum Drehimpuls l:




<math>\begin{align}
:<math>\begin{align}
   & T=\frac{1}{2}m\left( {{{\dot{x}}}^{2}}+{{{\dot{y}}}^{2}}+{{{\dot{z}}}^{2}} \right)=\frac{1}{2}m\left( {{{\dot{r}}}^{2}}+{{r}^{2}}{{{\dot{\phi }}}^{2}} \right) \\  
   & T=\frac{1}{2}m\left( {{{\dot{x}}}^{2}}+{{{\dot{y}}}^{2}}+{{{\dot{z}}}^{2}} \right)=\frac{1}{2}m\left( {{{\dot{r}}}^{2}}+{{r}^{2}}{{{\dot{\phi }}}^{2}} \right) \\  
  & V=V(r) \\  
  & V=V(r) \\  
Line 112: Line 112:




<math>\phi </math>
:<math>\phi </math>
ist zyklisch:  
ist zyklisch:  
<math>\frac{\partial L}{\partial \phi }=0\Rightarrow \frac{\partial L}{\partial \dot{\phi }}=m{{r}^{2}}\dot{\phi }=l=cons</math>
:<math>\frac{\partial L}{\partial \phi }=0\Rightarrow \frac{\partial L}{\partial \dot{\phi }}=m{{r}^{2}}\dot{\phi }=l=cons</math>




Line 120: Line 120:




<math>\begin{align}
:<math>\begin{align}
   & {{{\dot{p}}}_{k}}=-\frac{\partial H}{\partial {{q}_{k}}} \\  
   & {{{\dot{p}}}_{k}}=-\frac{\partial H}{\partial {{q}_{k}}} \\  
  & \frac{\partial H}{\partial {{p}_{k}}}={{{\dot{q}}}_{k}}\quad k=1,...,f \\  
  & \frac{\partial H}{\partial {{p}_{k}}}={{{\dot{q}}}_{k}}\quad k=1,...,f \\  
Line 129: Line 129:




<math>\begin{align}
:<math>\begin{align}
   & H={{p}_{r}}\dot{r}+{{p}_{\phi }}\dot{\phi }-L=m{{{\dot{r}}}^{2}}+m{{r}^{2}}{{{\dot{\phi }}}^{2}}-L=\frac{m}{2}\left( {{{\dot{r}}}^{2}}+{{r}^{2}}{{{\dot{\phi }}}^{2}} \right)+V(r) \\  
   & H={{p}_{r}}\dot{r}+{{p}_{\phi }}\dot{\phi }-L=m{{{\dot{r}}}^{2}}+m{{r}^{2}}{{{\dot{\phi }}}^{2}}-L=\frac{m}{2}\left( {{{\dot{r}}}^{2}}+{{r}^{2}}{{{\dot{\phi }}}^{2}} \right)+V(r) \\  
  & H=\frac{{{p}_{r}}^{2}}{2m}+\frac{{{p}_{\phi }}^{2}}{2m{{r}^{2}}}+V(r) \\  
  & H=\frac{{{p}_{r}}^{2}}{2m}+\frac{{{p}_{\phi }}^{2}}{2m{{r}^{2}}}+V(r) \\  
Line 136: Line 136:




<math>\frac{\partial H}{\partial \phi }=0\Rightarrow {{p}_{\phi }}={{\alpha }_{\phi }}=l=cons</math>
:<math>\frac{\partial H}{\partial \phi }=0\Rightarrow {{p}_{\phi }}={{\alpha }_{\phi }}=l=cons</math>




Line 142: Line 142:




<math>H=\frac{{{p}_{r}}^{2}}{2m}+\frac{{{l}^{2}}}{2m{{r}^{2}}}+V(r)</math>
:<math>H=\frac{{{p}_{r}}^{2}}{2m}+\frac{{{l}^{2}}}{2m{{r}^{2}}}+V(r)</math>




Line 148: Line 148:


Kanonische Transformationen sind diffeomorphe Transformationen (umkehrbar eindeutig und zweimal stetig diffbar):  
Kanonische Transformationen sind diffeomorphe Transformationen (umkehrbar eindeutig und zweimal stetig diffbar):  
<math>(\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right)</math>
:<math>(\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right)</math>






<math>H(\bar{q},\bar{p},t)\to \bar{H}\left( \bar{Q},\bar{P},t \right)</math>
:<math>H(\bar{q},\bar{p},t)\to \bar{H}\left( \bar{Q},\bar{P},t \right)</math>,
, die die Hamilton- Gleichungen forminvariant lassen.
die die Hamilton- Gleichungen forminvariant lassen.


====Bedingung für eine kanonische Transformation:====
====Bedingung für eine kanonische Transformation:====
Line 160: Line 160:




<math>\begin{align}
:<math>\begin{align}
   & \delta W=0 \\  
   & \delta W=0 \\  
  & \delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{q},\bar{p},t) \right\} \\  
  & \delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{q},\bar{p},t) \right\} \\  
Line 167: Line 167:


Ganz entsprechend muss für das System  
Ganz entsprechend muss für das System  
<math>\left( \bar{Q},\bar{P},\bar{H} \right)</math>
:<math>\left( \bar{Q},\bar{P},\bar{H} \right)</math>
gelten:
gelten:




<math>\begin{align}
:<math>\begin{align}
   & \delta W=0 \\  
   & \delta W=0 \\  
  & \delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right) \right\}=0 \\  
  & \delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right) \right\}=0 \\  
Line 180: Line 180:




<math>\sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{\dot{q}}_{k}}(t)-H(\bar{q},\bar{p},t)=\sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{\dot{Q}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right)+\frac{d}{dt}{{M}_{1}}</math>
:<math>\sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{\dot{q}}_{k}}(t)-H(\bar{q},\bar{p},t)=\sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{\dot{Q}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right)+\frac{d}{dt}{{M}_{1}}</math>




Line 186: Line 186:




<math>{{M}_{1}}(\bar{q},\bar{Q},t)</math>
:<math>{{M}_{1}}(\bar{q},\bar{Q},t)</math>,
, die "Erzeugende der kanonischen Trafo" genannt wird.
die "Erzeugende der kanonischen Trafo" genannt wird.


M1 ist dabei eine Verallgemeinerung der Eichfunktion  
M1 ist dabei eine Verallgemeinerung der Eichfunktion  
<math>M(\bar{q},t)</math>
:<math>M(\bar{q},t)</math>
aus dem Kapitel Eichtrafo der Lagrangefunktion (2.3)
aus dem Kapitel Eichtrafo der Lagrangefunktion (2.3)


====Beweis:====
====Beweis:====


<math>\frac{d}{dt}{{M}_{1}}=\sum\limits_{k=1}^{f}{{}}\left( \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}(t)+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}{{{\dot{Q}}}_{k}}(t) \right)+\frac{\partial {{M}_{1}}}{\partial t}</math>
:<math>\frac{d}{dt}{{M}_{1}}=\sum\limits_{k=1}^{f}{{}}\left( \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}(t)+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}{{{\dot{Q}}}_{k}}(t) \right)+\frac{\partial {{M}_{1}}}{\partial t}</math>




Line 201: Line 201:




<math>\sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{\dot{q}}_{k}}(t)-H(\bar{q},\bar{p},t)=\sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{\dot{Q}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right)+\frac{d}{dt}{{M}_{1}}</math>
:<math>\sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{\dot{q}}_{k}}(t)-H(\bar{q},\bar{p},t)=\sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{\dot{Q}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right)+\frac{d}{dt}{{M}_{1}}</math>,
, dass
dass




<math>\sum\limits_{k=1}^{f}{{}}\left( {{p}_{k}}-\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}} \right){{\dot{q}}_{k}}(t)=\sum\limits_{k=1}^{f}{{}}\left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right){{\dot{Q}}_{k}}(t)+H(\bar{q},\bar{p},t)-\bar{H}\left( \bar{Q},\bar{P},t \right)+\frac{\partial {{M}_{1}}}{\partial t}</math>
:<math>\sum\limits_{k=1}^{f}{{}}\left( {{p}_{k}}-\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}} \right){{\dot{q}}_{k}}(t)=\sum\limits_{k=1}^{f}{{}}\left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right){{\dot{Q}}_{k}}(t)+H(\bar{q},\bar{p},t)-\bar{H}\left( \bar{Q},\bar{P},t \right)+\frac{\partial {{M}_{1}}}{\partial t}</math>




Da aber  
Da aber  
<math>\bar{q}</math> und <math>\bar{Q}</math>
:<math>\bar{q}</math> und <math>\bar{Q}</math>
unabhängige Variablen sind kann obige Gleichung nur für alle denkbaren unabhängigen Variablen erfüllt werden, falls
unabhängige Variablen sind kann obige Gleichung nur für alle denkbaren unabhängigen Variablen erfüllt werden, falls




<math>\begin{align}
:<math>\begin{align}
   & {{p}_{k}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}} \\  
   & {{p}_{k}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}} \\  
  & {{P}_{k}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \\  
  & {{P}_{k}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \\  
Line 221: Line 221:


Das bedeutet jedoch, dass die kanonische Transformation durch  
Das bedeutet jedoch, dass die kanonische Transformation durch  
<math>{{M}_{1}}(\bar{q},\bar{Q},t)</math>
:<math>{{M}_{1}}(\bar{q},\bar{Q},t)</math>
eindeutig bestimmt ist:
eindeutig bestimmt ist:




<math>\begin{align}
:<math>\begin{align}
   & {{p}_{k}}=\frac{\partial {{M}_{1}}(\bar{q},\bar{Q},t)}{\partial {{q}_{k}}}\Rightarrow {{Q}_{j}}(\bar{q},\bar{p},t) \\  
   & {{p}_{k}}=\frac{\partial {{M}_{1}}(\bar{q},\bar{Q},t)}{\partial {{q}_{k}}}\Rightarrow {{Q}_{j}}(\bar{q},\bar{p},t) \\  
  & Bedingung:\det \left( \frac{{{\partial }^{2}}{{M}_{1}}}{\partial {{q}_{k}}\partial {{Q}_{j}}} \right)\ne 0 \\  
  & Bedingung:\det \left( \frac{{{\partial }^{2}}{{M}_{1}}}{\partial {{q}_{k}}\partial {{Q}_{j}}} \right)\ne 0 \\  
Line 232: Line 232:




Somit kann der Impuls durch die alten Koordinaten Ort,Impuls und zeit ausgedrückt werden und die Abhängigkeit von zeitabhängigkeiten verschwindet. ( Der Ausdruck von Q durch q, p und t ist als Umkehrung der Bestimmung von p zu sehen).
Somit kann der Impuls durch die alten Koordinaten Ort,Impuls und zeit ausgedrückt werden und die Abhängigkeit von zeitabhängigkeiten verschwindet. (Der Ausdruck von Q durch q, p und t ist als Umkehrung der Bestimmung von p zu sehen).


Für die gesamte  Umkehrtrafo gilt:  
Für die gesamte  Umkehrtrafo gilt:  
<math>{{P}_{j}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{j}}}\ in\ {{p}_{k}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}</math> liefert <math>\begin{align}
:<math>{{P}_{j}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{j}}}\ in\ {{p}_{k}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}</math> liefert <math>\begin{align}
   & {{q}_{k}}\left( \bar{Q},\bar{P},t \right)\ aus\ {{P}_{j}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{j}}} \\  
   & {{q}_{k}}\left( \bar{Q},\bar{P},t \right)\ aus\ {{P}_{j}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{j}}} \\  
  & und \\  
  & und \\  
Line 244: Line 244:
====Äquivalenzrelation:====
====Äquivalenzrelation:====


<math>\delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{q},\bar{p},t) \right\}=0</math>
:<math>\delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{q},\bar{p},t) \right\}=0</math>
(Legendre Trafo)
(Legendre Trafo)




<math>\Leftrightarrow \delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right) \right\}=0</math>
:<math>\Leftrightarrow \delta W=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}L=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}\left( \bar{Q},\bar{P},t \right) \right\}=0</math>




Line 254: Line 254:




<math>\begin{align}
:<math>\begin{align}
   & \delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{Q},\bar{P},t) \right\}=0 \\  
   & \delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{Q},\bar{P},t) \right\}=0 \\  
  & \Leftrightarrow \delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t)+\frac{d}{dt}{{M}_{1}} \right\}=0 \\  
  & \Leftrightarrow \delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t)+\frac{d}{dt}{{M}_{1}} \right\}=0 \\  
Line 264: Line 264:




<math>\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t) \right\}=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{\delta }{{P}_{k}}{{{\dot{Q}}}_{k}}(t)+{{P}_{k}}\delta {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}}\delta {{Q}_{k}}-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}}\delta {{P}_{k}} \right\}</math>
:<math>\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t) \right\}=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{\delta }{{P}_{k}}{{{\dot{Q}}}_{k}}(t)+{{P}_{k}}\delta {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}}\delta {{Q}_{k}}-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}}\delta {{P}_{k}} \right\}</math>






<math>\begin{align}
:<math>\begin{align}
   & \delta \left\{ {{M}_{1}}(q({{t}_{2}}),Q({{t}_{2}}),{{t}_{2}})-{{M}_{1}}(q({{t}_{1}}),Q({{t}_{1}}),{{t}_{1}}) \right\}=\sum\limits_{k}{\left( \left. \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}\delta {{q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}+\left. \frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}} \right)} \\  
   & \delta \left\{ {{M}_{1}}(q({{t}_{2}}),Q({{t}_{2}}),{{t}_{2}})-{{M}_{1}}(q({{t}_{1}}),Q({{t}_{1}}),{{t}_{1}}) \right\}=\sum\limits_{k}{\left( \left. \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}\delta {{q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}+\left. \frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}} \right)} \\  
  & mit\left. \quad \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}\delta {{q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}=0\quad und\quad \left. \frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}\ne 0 \\  
  & mit\left. \quad \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}\delta {{q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}=0\quad und\quad \left. \frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}\ne 0 \\  
Line 277: Line 277:




<math>\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt{{P}_{k}}\delta {{{\dot{Q}}}_{k}}(t)}=\left. {{P}_{k}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt{{{\dot{P}}}_{k}}\delta {{Q}_{k}}}</math>
:<math>\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt{{P}_{k}}\delta {{{\dot{Q}}}_{k}}(t)}=\left. {{P}_{k}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt{{{\dot{P}}}_{k}}\delta {{Q}_{k}}}</math>




Nebenbemerkung: Für die Variation gilt bekanntlich:  
Nebenbemerkung: Für die Variation gilt bekanntlich:  
<math>\delta \bar{q}({{t}_{1}})=\delta \bar{q}({{t}_{2}})=0</math>
:<math>\delta \bar{q}({{t}_{1}})=\delta \bar{q}({{t}_{2}})=0</math>.
. Jedoch sind p(t1) und p(t2) beliebig. Dadurch können sich nun insbesondere die Randbedingungen  für  
Jedoch sind p(t1) und p(t2) beliebig. Dadurch können sich nun insbesondere die Randbedingungen  für  
<math>Q(\bar{q},\bar{p},t)</math>
:<math>Q(\bar{q},\bar{p},t)</math>
ändern.
ändern.


Line 289: Line 289:




<math>0=\delta  \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dtL}=\sum\limits_{k=1}^{f}{{}}\left. \left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right)\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}+\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\sum\limits_{k=1}^{f}{{}}\left\{ \left( {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}} \right)\delta {{P}_{k}}-\left( {{{\dot{P}}}_{k}}(t)+\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}} \right)\delta {{Q}_{k}} \right\}</math>
:<math>0=\delta  \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dtL}=\sum\limits_{k=1}^{f}{{}}\left. \left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right)\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}+\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\sum\limits_{k=1}^{f}{{}}\left\{ \left( {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}} \right)\delta {{P}_{k}}-\left( {{{\dot{P}}}_{k}}(t)+\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}} \right)\delta {{Q}_{k}} \right\}</math>




Line 295: Line 295:




<math>\left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right)=0</math>
:<math>\left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right)=0</math>




Gleichzeitig sind jedoch Pi und Qi unabhängig und können demnach unabhängig variiert werden. Das bedeutet, dass
Gleichzeitig sind jedoch Pi und Qi unabhängig und können demnach unabhängig variiert werden. Das bedeutet, dass
<math>\delta {{P}_{k}}\quad und\quad \delta {{Q}_{k}}</math>
:<math>\delta {{P}_{k}}\quad und\quad \delta {{Q}_{k}}</math>
unabhängig sind.
unabhängig sind.


Line 305: Line 305:




<math>\begin{align}
:<math>\begin{align}
   & 0=\left( {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}} \right) \\  
   & 0=\left( {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}} \right) \\  
  & 0=\left( {{{\dot{P}}}_{k}}(t)+\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}} \right) \\  
  & 0=\left( {{{\dot{P}}}_{k}}(t)+\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}} \right) \\  
Line 322: Line 322:




<math>\sum\limits_{k=1}^{f}{{}}\left( {{p}_{k}}{{{\dot{q}}}_{k}}-{{P}_{k}}{{{\dot{Q}}}_{k}} \right)-\left( H-\bar{H} \right)=\frac{d}{dt}{{M}_{1}}</math>
:<math>\sum\limits_{k=1}^{f}{{}}\left( {{p}_{k}}{{{\dot{q}}}_{k}}-{{P}_{k}}{{{\dot{Q}}}_{k}} \right)-\left( H-\bar{H} \right)=\frac{d}{dt}{{M}_{1}}</math>




Line 328: Line 328:




<math>\frac{d}{dt}{{M}_{1}}=\frac{d}{dt}\left( {{M}_{2}}(\bar{q}(t),\bar{P}(t),t)-\sum\limits_{k}{{{P}_{k}}{{Q}_{k}}} \right)=\sum\limits_{k=1}^{f}{{}}\left( \frac{\partial {{M}_{2}}}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}}{{{\dot{P}}}_{k}}-{{{\dot{P}}}_{k}}{{Q}_{k}}-{{P}_{k}}{{{\dot{Q}}}_{k}} \right)+\frac{\partial {{M}_{2}}}{\partial t}</math>
:<math>\frac{d}{dt}{{M}_{1}}=\frac{d}{dt}\left( {{M}_{2}}(\bar{q}(t),\bar{P}(t),t)-\sum\limits_{k}{{{P}_{k}}{{Q}_{k}}} \right)=\sum\limits_{k=1}^{f}{{}}\left( \frac{\partial {{M}_{2}}}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}}{{{\dot{P}}}_{k}}-{{{\dot{P}}}_{k}}{{Q}_{k}}-{{P}_{k}}{{{\dot{Q}}}_{k}} \right)+\frac{\partial {{M}_{2}}}{\partial t}</math>




Line 334: Line 334:




<math>\sum\limits_{k=1}^{f}{{}}\left( {{p}_{k}}-\frac{\partial {{M}_{2}}}{\partial {{q}_{k}}} \right){{\dot{q}}_{k}}+\left( {{Q}_{k}}-\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}} \right){{\dot{P}}_{k}}+({{P}_{k}}-{{P}_{k}}){{\dot{Q}}_{k}}=\left( H-\bar{H} \right)+\frac{\partial {{M}_{2}}}{\partial t}</math>
:<math>\sum\limits_{k=1}^{f}{{}}\left( {{p}_{k}}-\frac{\partial {{M}_{2}}}{\partial {{q}_{k}}} \right){{\dot{q}}_{k}}+\left( {{Q}_{k}}-\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}} \right){{\dot{P}}_{k}}+({{P}_{k}}-{{P}_{k}}){{\dot{Q}}_{k}}=\left( H-\bar{H} \right)+\frac{\partial {{M}_{2}}}{\partial t}</math>




Da dies für beliebige  
Da dies für beliebige  
<math>{{\dot{q}}_{k}},{{\dot{P}}_{k}}</math>
:<math>{{\dot{q}}_{k}},{{\dot{P}}_{k}}</math>
gilt, kann die Summe nur allgemein identisch sein, wenn gilt:
gilt, kann die Summe nur allgemein identisch sein, wenn gilt:




<math>\begin{align}
:<math>\begin{align}
   & \left( {{p}_{k}}-\frac{\partial {{M}_{2}}}{\partial {{q}_{k}}} \right)=0\Rightarrow {{p}_{k}}=\frac{\partial {{M}_{2}}}{\partial {{q}_{k}}} \\  
   & \left( {{p}_{k}}-\frac{\partial {{M}_{2}}}{\partial {{q}_{k}}} \right)=0\Rightarrow {{p}_{k}}=\frac{\partial {{M}_{2}}}{\partial {{q}_{k}}} \\  
  & {{Q}_{k}}=\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}} \\  
  & {{Q}_{k}}=\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}} \\  
Line 352: Line 352:




<math>{{M}_{3}}(\bar{p},\bar{Q},t)={{M}_{1}}(\bar{q},\bar{Q},t)-\sum\limits_{k=1}^{f}{{}}\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}{{q}_{k}}</math>
:<math>{{M}_{3}}(\bar{p},\bar{Q},t)={{M}_{1}}(\bar{q},\bar{Q},t)-\sum\limits_{k=1}^{f}{{}}\frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}{{q}_{k}}</math>




Hier folgt ( Übungsaufgabe):
Hier folgt (Übungsaufgabe):




<math>\begin{align}
:<math>\begin{align}
   & \left( {{q}_{k}}+\frac{\partial {{M}_{3}}}{\partial {{p}_{k}}} \right)=0\Rightarrow {{q}_{k}}=-\frac{\partial {{M}_{3}}}{\partial {{p}_{k}}} \\  
   & \left( {{q}_{k}}+\frac{\partial {{M}_{3}}}{\partial {{p}_{k}}} \right)=0\Rightarrow {{q}_{k}}=-\frac{\partial {{M}_{3}}}{\partial {{p}_{k}}} \\  
  & {{P}_{k}}=-\frac{\partial {{M}_{2}}}{\partial {{Q}_{k}}} \\  
  & {{P}_{k}}=-\frac{\partial {{M}_{2}}}{\partial {{Q}_{k}}} \\  
Line 365: Line 365:




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow \left( {{q}_{k}}+\frac{\partial {{M}_{4}}}{\partial {{p}_{k}}} \right)=0\Rightarrow {{q}_{k}}=-\frac{\partial {{M}_{4}}}{\partial {{p}_{k}}} \\  
   & \Rightarrow \left( {{q}_{k}}+\frac{\partial {{M}_{4}}}{\partial {{p}_{k}}} \right)=0\Rightarrow {{q}_{k}}=-\frac{\partial {{M}_{4}}}{\partial {{p}_{k}}} \\  
  & {{Q}_{k}}=-\frac{\partial {{M}_{4}}}{\partial {{P}_{k}}} \\  
  & {{Q}_{k}}=-\frac{\partial {{M}_{4}}}{\partial {{P}_{k}}} \\  
Line 376: Line 376:




<math>\begin{align}
:<math>\begin{align}
   & {{M}_{1}}(\bar{q},\bar{Q},t)=\sum\limits_{j=1}^{f}{{}}{{q}_{j}}{{Q}_{j}} \\  
   & {{M}_{1}}(\bar{q},\bar{Q},t)=\sum\limits_{j=1}^{f}{{}}{{q}_{j}}{{Q}_{j}} \\  
  & \Rightarrow {{p}_{j}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{j}}}=-{{Q}_{j}} \\  
  & \Rightarrow {{p}_{j}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{j}}}=-{{Q}_{j}} \\  
Line 389: Line 389:




<math>\begin{align}
:<math>\begin{align}
   & {{M}_{2}}(\bar{q},\bar{P},t)=\sum\limits_{j=1}^{f}{{}}{{q}_{j}}{{P}_{j}} \\  
   & {{M}_{2}}(\bar{q},\bar{P},t)=\sum\limits_{j=1}^{f}{{}}{{q}_{j}}{{P}_{j}} \\  
  & \Rightarrow {{p}_{j}}=\frac{\partial {{M}_{2}}}{\partial {{q}_{j}}}={{P}_{j}} \\  
  & \Rightarrow {{p}_{j}}=\frac{\partial {{M}_{2}}}{\partial {{q}_{j}}}={{P}_{j}} \\  
Line 399: Line 399:
Dies ist also die identische Transformation
Dies ist also die identische Transformation


====Beispiel: Harmonischer Oszillator:====
That’s not just logic. That’s really senislbe.
 
 
<math>\begin{align}
  & H=\frac{{{p}^{2}}}{2m}+\frac{m{{\omega }^{2}}}{2}{{q}^{2}} \\
& {{M}_{1}}(q,Q)=\frac{m\omega }{2}{{q}^{2}}\cot Q \\
& \Rightarrow p=\frac{\partial {{M}_{1}}}{\partial q}=m\omega q\cot Q \\
& P=-\frac{\partial {{M}_{1}}}{\partial Q}=\frac{m\omega }{2}\frac{{{q}^{2}}}{{{\sin }^{2}}Q} \\
& q={{\left( \frac{2}{m\omega }P \right)}^{\frac{1}{2}}}\sin Q \\
& p={{\left( 2m\omega P \right)}^{\frac{1}{2}}}\cos Q \\
&  \\
\end{align}</math>
 
 
 
<math>\begin{align}
  & H=\bar{H}\quad \left( \frac{\partial {{M}_{1}}}{\partial t} \right)=0 \\
& H=\frac{2m\omega P{{\cos }^{2}}Q}{2m}+\frac{m{{\omega }^{2}}2P}{2m\omega }{{\sin }^{2}}Q=\omega P \\
\end{align}</math>
 
 
Die Variable Q ist also zyklisch.
 
 
<math>\begin{align}
  & \dot{P}=-\frac{\partial H}{\partial Q}=0\Rightarrow P=\alpha =const \\
& \dot{Q}=\frac{\partial H}{\partial P}=\omega \Rightarrow Q=\omega t+\beta  \\
\end{align}</math>
 
 
Somit kann q(t) durch Integration ( 2 Integrationskonstanten !!) gefunden werden:
 
 
<math>q(t)={{\left( \frac{2\alpha }{m\omega } \right)}^{\frac{1}{2}}}\sin \left( \omega t+\beta  \right)</math>
 
 
Dabei beschreibt
<math>\alpha </math>
die Amplitude und
<math>\beta </math>
die Phase.

Latest revision as of 19:15, 1 July 2011


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=3}} Kategorie:Mechanik __SHOWFACTBOX__



Wir wissen bereits, dass die Wahl der verallgemeinerten Koordinaten nicht eindeutig ist (Kapitel 2.4: Forminvarianz der Lagrangegleichungen).

Dabei haben wir gesehen, dass die Lagrangegleichungen 2. Art forminvariant bleiben unter beliebigen diffeomorphen Transformationen der Koordinaten:


q¯=(q1,...,qf)Q¯=(Q1,...,Qf)


Dabei gilt dann:


L¯(Q¯,Q¯˙,t)=L(q¯(Q¯,t),q¯˙(Q¯,Q¯˙,t),t)


Nun kann man sich fragen, unter welchen Transformationen

(q¯,p¯)(Q¯,P¯)


die Hamiltonfunktionen forminvariant sind, also:

mit

p˙k=Hqkq˙k=Hpk

soll auch

P˙k=H¯QkQ˙k=H¯Pk
gelten!

Nebenbemerkungen:

  • die Klasse der erlaubten Transformationen muss größer sein als beim Lagrangeformalismus, da jetzt die pk neben den qk als UNABHÄNGIGE Variablen betrachtet werden, die ebenfalls und vor allem völlig unabhängig transformiert werden können.
  • Die neuen Qk und Pk haben unter Umständen gar nicht mehr den Charakter von Orts- und Impulsvariablen.

In den Lagrangegleichungen der 2. Art heißt qj zyklisch, wenn:


Lqj=0ddtLq˙j=ddtpj=0pj=Lq˙j=const


Allerdings ist damit keine Aussage über

q˙j

gemacht. Diese muss natürlich weiter als Variable behandelt werden.

Hamilton-Gleichungen:[edit | edit source]

In

H(q1,...,qf,p1,...,pf,t)

heißt

qj

zyklisch, wenn


Hqj=0Lqj=ddtpj=0pj:=αj=const


Das bedeutet nun, dass

qj

in H gar nicht auftritt.

pj

kann dagegen durch die Bewegungskonstante


αj

ersetzt werden:


H(q1,...,qj1,qj+1,...,qf,p1,...,pj1,αj,pj+1,...,pf,t)


Damit jedoch hat das kanonische System nur noch f-1 Freiheitsgrade.

Idee ist es nun, die Hamiltongleichungen zu lösen, indem man Schritt für Schritt zyklische Variablen durch geeignete Trafos der

(q¯,p¯)(Q¯,P¯)
einführt, bis alle 
Q¯

zyklisch sind:


H=H(P1,...,Pf,t) mit Pk=αk=const.


Q˙k=HPk=:vk(t)Qk=t0tvk(t´)dt´+βk


Insgesamt finden sich 2f Konstanten der Bewegung:


αk,βk

k=1,...,f

Als Beispiel (Vergl. Kapitel 3.5) betrachten wir das reduzierte 2-Körper-Problem in der Ebene senkrecht zum Drehimpuls l:


T=12m(x˙2+y˙2+z˙2)=12m(r˙2+r2ϕ˙2)V=V(r)L=L(r,r˙,ϕ,ϕ˙,)=12m(r˙2+r2ϕ˙2)V


ϕ

ist zyklisch:

Lϕ=0Lϕ˙=mr2ϕ˙=l=cons


Die Hamiltonschen Gleichungen lauten:


p˙k=HqkHpk=q˙kk=1,...,fpr=Lr˙=mr˙r˙=Hpr=prmpϕ=Lϕ˙=mr2ϕ˙ϕ˙=Hpϕ=pϕmr2


H=prr˙+pϕϕ˙L=mr˙2+mr2ϕ˙2L=m2(r˙2+r2ϕ˙2)+V(r)H=pr22m+pϕ22mr2+V(r)


Hϕ=0pϕ=αϕ=l=cons


Somit läßt sich die Hamiltonfunktion von f=2 auf f=1 Freiheitsgrade reduzieren:


H=pr22m+l22mr2+V(r)


Definition der kanonischen Transformationen[edit | edit source]

Kanonische Transformationen sind diffeomorphe Transformationen (umkehrbar eindeutig und zweimal stetig diffbar):

(q¯,p¯)(Q¯,P¯)


H(q¯,p¯,t)H¯(Q¯,P¯,t),
die die Hamilton- Gleichungen forminvariant lassen.

Bedingung für eine kanonische Transformation:[edit | edit source]

Die Hamiltonschen Gleichungen folgen aus dem Hamiltonschen Prinzip:


δW=0δW=δt1t2dtL=δt1t2dt{k=1fpkq˙k(t)H(q¯,p¯,t)}

(Legendre Trafo)

Ganz entsprechend muss für das System

(Q¯,P¯,H¯)

gelten:


δW=0δW=δt1t2dtL=δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)}=0


Man kann sich leicht überzeugen, dass diese beiden Forderungen äquivalent sind, falls:


k=1fpkq˙k(t)H(q¯,p¯,t)=k=1fPkQ˙k(t)H¯(Q¯,P¯,t)+ddtM1


Mit einer beliebigen Funktion


M1(q¯,Q¯,t),
die "Erzeugende der kanonischen Trafo" genannt wird.

M1 ist dabei eine Verallgemeinerung der Eichfunktion

M(q¯,t)

aus dem Kapitel Eichtrafo der Lagrangefunktion (2.3)

Beweis:[edit | edit source]

ddtM1=k=1f(M1qkq˙k(t)+M1QkQ˙k(t))+M1t


Es folgt dann aus


k=1fpkq˙k(t)H(q¯,p¯,t)=k=1fPkQ˙k(t)H¯(Q¯,P¯,t)+ddtM1,
dass


k=1f(pkM1qk)q˙k(t)=k=1f(Pk+M1Qk)Q˙k(t)+H(q¯,p¯,t)H¯(Q¯,P¯,t)+M1t


Da aber

q¯ und Q¯

unabhängige Variablen sind kann obige Gleichung nur für alle denkbaren unabhängigen Variablen erfüllt werden, falls


pk=M1qkPk=M1QkH¯(Q¯,P¯,t)=H(q¯,p¯,t)+M1t


Das bedeutet jedoch, dass die kanonische Transformation durch

M1(q¯,Q¯,t)

eindeutig bestimmt ist:


pk=M1(q¯,Q¯,t)qkQj(q¯,p¯,t)Bedingung:det(2M1qkQj)0Pk=M1(q¯,Q¯,t)Qk=M1(q¯,Q¯(q¯,p¯,t),t)Qk=Pk(q¯,p¯,t)


Somit kann der Impuls durch die alten Koordinaten Ort,Impuls und zeit ausgedrückt werden und die Abhängigkeit von zeitabhängigkeiten verschwindet. (Der Ausdruck von Q durch q, p und t ist als Umkehrung der Bestimmung von p zu sehen).

Für die gesamte Umkehrtrafo gilt:

Pj=M1Qjinpk=M1qk liefert qk(Q¯,P¯,t)ausPj=M1Qjundpj(Q¯,P¯,t)auspk=M1qk


Äquivalenzrelation:[edit | edit source]

δW=δt1t2dtL=δt1t2dt{k=1fpkq˙k(t)H(q¯,p¯,t)}=0

(Legendre Trafo)


δW=δt1t2dtL=δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)}=0


Beweis:


δt1t2dt{k=1fpkq˙k(t)H(Q¯,P¯,t)}=0δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)+ddtM1}=0=δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)}+δ{M1(q(t2),Q(t2),t2)M1(q(t1),Q(t1),t1)}


Dabei gelten die Relationen:


δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)}=t1t2dt{k=1fδPkQ˙k(t)+PkδQ˙k(t)H¯(Q¯,P¯,t)QkδQkH¯(Q¯,P¯,t)PkδPk}


δ{M1(q(t2),Q(t2),t2)M1(q(t1),Q(t1),t1)}=k(M1qkδqk|t1t2+M1QkδQk|t1t2)mitM1qkδqk|t1t2=0undM1QkδQk|t1t20


Außerdem:


t1t2dtPkδQ˙k(t)=PkδQk|t1t2t1t2dtP˙kδQk


Nebenbemerkung: Für die Variation gilt bekanntlich:

δq¯(t1)=δq¯(t2)=0.
Jedoch sind p(t1) und p(t2) beliebig. Dadurch können sich nun insbesondere die Randbedingungen  für 
Q(q¯,p¯,t)

ändern.

Unter Beachtung der obigen relationen gilt nun:


0=δt1t2dtL=k=1f(Pk+M1Qk)δQk|t1t2+t1t2dtk=1f{(Q˙k(t)H¯(Q¯,P¯,t)Pk)δPk(P˙k(t)+H¯(Q¯,P¯,t)Qk)δQk}


Aus den obigen Relationen ist bekannt:


(Pk+M1Qk)=0


Gleichzeitig sind jedoch Pi und Qi unabhängig und können demnach unabhängig variiert werden. Das bedeutet, dass

δPkundδQk

unabhängig sind.

Somit muss jeweils für sich gelten:


0=(Q˙k(t)H¯(Q¯,P¯,t)Pk)0=(P˙k(t)+H¯(Q¯,P¯,t)Qk)


und es sind die Hamiltonschen Gleichungen äquivalent in den neuen Koordinaten, was zu beweisen war.

Äquivalente Formen der erzeugenden Funktion[edit | edit source]

Eine Legendre- Transformation von M1 liefert:


Aus dem vorigen Beweis ist bekannt:


k=1f(pkq˙kPkQ˙k)(HH¯)=ddtM1


Außerdem gilt:


ddtM1=ddt(M2(q¯(t),P¯(t),t)kPkQk)=k=1f(M2qkq˙k+M2PkP˙kP˙kQkPkQ˙k)+M2t


So dass folgt:


k=1f(pkM2qk)q˙k+(QkM2Pk)P˙k+(PkPk)Q˙k=(HH¯)+M2t


Da dies für beliebige

q˙k,P˙k

gilt, kann die Summe nur allgemein identisch sein, wenn gilt:


(pkM2qk)=0pk=M2qkQk=M2PkH¯=H+M2t


Analog kann gezeigt werden, dass für


M3(p¯,Q¯,t)=M1(q¯,Q¯,t)k=1fM1qkqk


Hier folgt (Übungsaufgabe):


(qk+M3pk)=0qk=M3pkPk=M2Qk oder M4(p¯,P¯,t)=M1(q¯,Q¯,t)k=1f(M1qkqk+M1QkQk)


(qk+M4pk)=0qk=M4pkQk=M4Pk


Beispiele für kanonische Transformationen[edit | edit source]

Erzeugende sei:


M1(q¯,Q¯,t)=j=1fqjQjpj=M1qj=QjPj=M1Qj=qj(q¯,p¯)(P¯,Q¯)


Bei dieser Trafo werden also Ort und Impuls vertauscht.

Beispiel 2:


M2(q¯,P¯,t)=j=1fqjPjpj=M2qj=PjQj=M2Pj=qj(q¯,p¯)(Q¯,P¯)


Dies ist also die identische Transformation

That’s not just logic. That’s really senislbe.