Editing
Maxwell- Gleichungen im Vakuum
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{Scripthinweis|Elektrodynamik|3|2}}</noinclude> Die Forderungen an dynamische Gleichungen für zeitartige Felder :<math>\bar{E}(\bar{r},t),\bar{B}(\bar{r},t)</math> lauten: 1) im quasistatischen Grenzfall sollen die statischen MWGl herauskommen: :<math>\begin{align} & {{\nabla }_{r}}\times \bar{E}=0 \\ & {{\varepsilon }_{0}}{{\nabla }_{r}}\cdot \bar{E}-\rho =0 \\ & {{\nabla }_{r}}\cdot \bar{B}=0 \\ & \nabla \times \bar{B}-{{\mu }_{0}}\bar{j}=0 \\ \end{align}</math> 2) die Gleichungen sollen linear in :<math>\bar{E}(\bar{r},t),\bar{B}(\bar{r},t)</math> sein, um das Superpositionsprinzip zu erfüllen! Die Gleichungen sollen 1. Ordnung in t sein (um das Kausalitätsprinzip zu erfüllen!) Die linke Seite der Maxwellgleichungen (oben) soll zur Zeit t=0 den Zustand für t> 0 vollständig festlegen!! Somit sind :<math>\begin{align} & {{\nabla }_{r}}\times \bar{E}={{a}_{1}}\dot{\bar{E}}+{{b}_{1}}\dot{\bar{B}} \\ & \nabla \times \bar{B}-{{\mu }_{0}}\bar{j}={{a}_{2}}\dot{\bar{E}}+{{b}_{2}}\dot{\bar{B}} \\ & {{\varepsilon }_{0}}{{\nabla }_{r}}\cdot \bar{E}-\rho =0 \\ & {{\nabla }_{r}}\cdot \bar{B}=0 \\ \end{align}</math> Dies sind 6 Vektorgleichungen, die :<math>\bar{E}(\bar{r},t),\bar{B}(\bar{r},t)</math> für t> 0 festlegen und 2 skalare Gleichungen 3) Wir fordern TCP- Invarianz: :<math>\begin{align} & {{T}_{g}}oder\ {{P}_{g}}\Rightarrow {{a}_{1}}=0 \\ & {{T}_{u}}oder\ {{P}_{u}}\Rightarrow {{b}_{2}}=0 \\ \end{align}</math> Also bleibt: :<math>\begin{align} & {{\nabla }_{r}}\times \bar{E}={{b}_{1}}\dot{\bar{B}} \\ & \nabla \times \bar{B}-{{\mu }_{0}}\bar{j}={{a}_{2}}\dot{\bar{E}} \\ & {{\varepsilon }_{0}}{{\nabla }_{r}}\cdot \bar{E}-\rho =0 \\ & {{\nabla }_{r}}\cdot \bar{B}=0 \\ \end{align}</math> 4) Ladungserhaltung: :<math>\begin{align} & 0=\frac{\partial }{\partial t}\left( {{\varepsilon }_{0}}{{\nabla }_{r}}\cdot \bar{E}-\rho \right)={{\varepsilon }_{0}}{{\nabla }_{r}}\cdot \dot{\bar{E}}-\dot{\rho }=\frac{{{\varepsilon }_{0}}}{{{a}_{2}}}\nabla \cdot \left( \nabla \times \bar{B}-{{\mu }_{0}}\bar{j} \right)-\dot{\rho } \\ & \frac{{{\varepsilon }_{0}}}{{{a}_{2}}}\nabla \cdot \nabla \times \bar{B}=0 \\ & \Rightarrow \frac{{{\varepsilon }_{0}}}{{{a}_{2}}}\nabla \cdot \left( {{\mu }_{0}}\bar{j} \right)-\dot{\rho }=0 \\ & \Rightarrow {{a}_{2}}={{\varepsilon }_{0}}{{\mu }_{0}} \\ \end{align}</math> Unter Verwendung der Kontinuitätsgleichung! Somit (vergl. S. 32, §2.3 folgt die Verschiebungsstromdichte :<math>{{\varepsilon }_{0}}\dot{\bar{E}}</math> 5) Lorentzkraft :<math>\bar{F}=q\bar{v}\times \bar{B}</math> soll aus einem Extremalprinzip, ergo dem Hamiltonschen Prinzip ableitbar sein. Suche also eine Lagrange- Funktion :<math>L(\bar{r},\bar{v},t)</math> so dass die Lagrangegleichung :<math>\frac{d}{dt}\left( \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}} \right)-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=0</math> die nichtrelativistische Bewegungsgleichung :<math>m\ddot{\bar{r}}=q\left[ \bar{E}(\bar{r},t)+\bar{v}\times \bar{B}(\bar{r},t) \right]</math> ergibt! Lösung: :<math>L=\frac{m}{2}{{v}^{2}}+q\left[ \bar{v}\bar{A}(\bar{r},t)-\Phi (\bar{r},t) \right]</math> Tatsächlich gilt :<math>{{p}_{k}}=\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{v}_{k}}+q{{A}_{k}}(\bar{r},t)</math> = kanonischer Impuls :<math>\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{\ddot{x}}_{k}}+q\frac{d}{dt}{{A}_{k}}(\bar{r},t)</math> Dabei ist die Zeitableitung von A als totales Differenzial entlang einer Bahn :<math>\bar{r}</math> zu sehen! :<math>\begin{align} & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t) \\ & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\ & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\ & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi \\ & \left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\ & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\ \end{align}</math> Vergleich mit der Lorentzkraft liefert: :<math>\begin{align} & \bar{E}(\bar{r},t)=-\frac{\partial }{\partial t}A(\bar{r},t)-\nabla \Phi \\ & \bar{B}(\bar{r},t)=\nabla \times A(\bar{r},t) \\ \end{align}</math> und: :<math>\begin{align} & \nabla \times \bar{E}(\bar{r},t)=-\frac{\partial }{\partial t}\nabla \times A(\bar{r},t)-\nabla \times \nabla \Phi \\ & \nabla \times A(\bar{r},t)=\bar{B}(\bar{r},t) \\ & \nabla \times \nabla \Phi =0 \\ & \Rightarrow {{b}_{1}}=-1 \\ \end{align}</math> <u>'''Vollständige (zeitabhängige) Maxwellgleichungen im Vakuum'''</u> mit den neuen Feldgrößen :<math>\bar{D}(\bar{r},t):={{\varepsilon }_{0}}\bar{E}(\bar{r},t)</math> dielektrische Verschiebung und :<math>\bar{H}(\bar{r},t):=\frac{1}{{{\mu }_{0}}}\bar{B}(\bar{r},t)</math>, Magnetfeld ergibt sich: :<math>\begin{align} & {{\nabla }_{r}}\times \bar{E}+\dot{\bar{B}}=0 \\ & {{\nabla }_{r}}\cdot \bar{B}=0 \\ & {{\nabla }_{r}}\cdot \bar{D}=\rho \\ & {{\nabla }_{r}}\times \bar{H}-\dot{\bar{D}}=\bar{j} \\ \end{align}</math> Dabei sind :<math>\begin{align} & {{\nabla }_{r}}\times \bar{E}+\dot{\bar{B}}=0 \\ & {{\nabla }_{r}}\cdot \bar{B}=0 \\ \end{align}</math> die homogenen Gleichungen, die die Wechselwirkung einer Punktladung mit gegebenen Feldern :<math>\bar{E},\bar{B}</math> beschreiben und :<math>\begin{align} & {{\nabla }_{r}}\cdot \bar{D}=\rho \\ & {{\nabla }_{r}}\times \bar{H}-\dot{\bar{D}}=\bar{j} \\ \end{align}</math> die inhomogenen Gleichungen, die Erzeugung der Felder :<math>\bar{D},\bar{H}</math> durch gegebene Ladungen und Ströme Im Gauß- System: :<math>\begin{align} & {{\nabla }_{r}}\times \bar{E}+\frac{1}{c}\dot{\bar{B}}=0 \\ & {{\nabla }_{r}}\cdot \bar{B}=0 \\ & {{\nabla }_{r}}\cdot \bar{E}=4\pi \rho \\ & {{\nabla }_{r}}\times \bar{B}-\dot{\bar{E}}=\frac{4\pi }{c}\bar{j} \\ \end{align}</math> Mit :<math>\begin{align} & \bar{E}=-\frac{1}{c}\frac{\partial }{\partial t}\bar{A}-\nabla \Phi \\ & \bar{B}=\nabla \times \bar{A} \\ & \bar{D}=\bar{E} \\ & \bar{H}=\bar{B} \\ \end{align}</math> im Vakuum!
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:ScriptProf
(
edit
)
Template:Scripthinweis
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects