Editing
Eichtransformation der Lagrangefunktion
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{Scripthinweis|Mechanik|2|3}}</noinclude> ==Uneindeutigkeit der Lagrangefunktion== Die Lagarangefunktion wird duch die Lagrangegleichung nicht eindeutig festgelegt. Betrachten wir beispielsweise ein geladenes Teilchen im '''elektrischen''' Feld: :<math>\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right)=\left( {{x}_{1}},{{x}_{2}},{{x}_{3}} \right)</math> e sei die Ladung Bewegungsgleichung: :<math>m\frac{{{d}^{2}}^{{}}}{d{{t}^{2}}}\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right)=m\ddot{\bar{q}}=e\bar{E}(\bar{q},t)+e\dot{\bar{q}}\times \bar{B}(\bar{q},t)</math> Die {{FB|Lorentzkraft}} ist typischerweise '''nicht konservativ''' Die Darstellung des elektrischen und magnetischen Feldes erfolgt über die Potenziale: :<math>\begin{align} & \bar{E}(\bar{q},t)=-\nabla \Phi (\bar{q},t)-\frac{\partial }{\partial t}\bar{A}(\bar{q},t) \\ & \bar{B}(\bar{q},t)=\nabla \times \bar{A}(\bar{q},t) \\ \end{align}</math> Dabei ist <math>\Phi</math> Skalar und A ein Vektorpotenzial (MKSA- System) '''Ziel''': Suche eine Lagrangefunktion <math>L(q,\dot{q},t)=T-V</math> in der Art, dass <math>\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=0</math> Die Bewegungsgleichung :<math>m\frac{{{d}^{2}}^{{}}}{d{{t}^{2}}}\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right)=m\ddot{\bar{q}}=e\bar{E}(\bar{q},t)+e\dot{\bar{q}}\times \bar{B}(\bar{q},t)</math> ergeben. Ansatz: :<math>L(q,\dot{q},t)=\frac{m}{2}{{\dot{\bar{q}}}^{2}}+e\left( \dot{\bar{q}}\bar{A}(\bar{q},t)-\Phi (\bar{q},t) \right)</math> Probe: :<math>\begin{align} & \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=m{{{\dot{q}}}_{k}}+e{{A}_{k}} \\ & \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=m{{{\ddot{q}}}_{k}}+e\frac{d}{dt}{{A}_{k}}(\bar{q}(t),t) \\ & \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=m{{{\ddot{q}}}_{k}}+e\left( \frac{\partial }{\partial t}{{A}_{k}}+\sum\limits_{l}{\frac{\partial {{A}_{k}}}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}} \right) \\ & \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=m{{{\ddot{q}}}_{k}}+e\left( \frac{\partial }{\partial t}{{A}_{k}}+\left( \dot{\bar{q}}\cdot \nabla \right){{A}_{k}} \right) \\ \end{align}</math> Weiter: :<math>\frac{\partial L}{\partial {{q}_{k}}}=e\left[ \frac{\partial }{\partial {{q}_{k}}}\left( \dot{\bar{q}}\cdot \bar{A} \right)-\frac{\partial }{\partial {{q}_{k}}}\Phi \right]</math> Somit: :<math>\begin{align} & 0=\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=m{{{\ddot{q}}}_{k}}+e\left( \frac{\partial }{\partial t}{{A}_{k}}+\left( \dot{\bar{q}}\cdot \nabla \right){{A}_{k}} \right)-e\left[ \frac{\partial }{\partial {{q}_{k}}}\left( \dot{\bar{q}}\cdot \bar{A} \right)-\frac{\partial }{\partial {{q}_{k}}}\Phi \right] \\ & =m{{{\ddot{q}}}_{k}}+e\left( \frac{\partial }{\partial t}{{A}_{k}}+\frac{\partial }{\partial {{q}_{k}}}\Phi \right)+e\left[ -\frac{\partial }{\partial {{q}_{k}}}\left( \dot{\bar{q}}\cdot \bar{A} \right)+\left( \dot{\bar{q}}\cdot \nabla \right){{A}_{k}} \right] \\ & =m{{{\ddot{q}}}_{k}}-e{{E}_{k}}-{{\left[ e\dot{\bar{q}}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\ & =m{{{\ddot{q}}}_{k}}-e{{E}_{k}}-{{\left[ e\dot{\bar{q}}\times \bar{B} \right]}_{k}} \\ \end{align}</math> Somit erfüllt unser Ansatz die Bewegungsgleichungen == Eichtransformationen == Die Potenziale lassen sich umeichen mit Hilfe der {{FB|Eichfunktion}} :<math>\chi </math>: :<math>\begin{align} & \bar{A}(\bar{q},t)\to \bar{A}\acute{\ }(\bar{q},t)=\bar{A}(\bar{q},t)+\nabla \chi (\bar{q},t) \\ & \Phi (\bar{q},t)\to \Phi \acute{\ }(\bar{q},t)=\Phi (\bar{q},t)-\frac{\partial }{\partial t}\chi (\bar{q},t) \\ \end{align}</math> Durch Einsetzen sieht man schnell, dass sich die Felder nicht ändern: :<math>\begin{align} & \bar{E}\acute{\ }(\bar{q},t)=-\nabla \Phi \acute{\ }(\bar{q},t)-\frac{\partial }{\partial t}\bar{A}\acute{\ }(\bar{q},t)=-\nabla \left( \Phi (\bar{q},t)-\frac{\partial }{\partial t}\chi (\bar{q},t) \right)-\frac{\partial }{\partial t}\left( \bar{A}(\bar{q},t)+\nabla \chi (\bar{q},t) \right)=\bar{E}(\bar{q},t) \\ & \bar{B}\acute{\ }(\bar{q},t)=\nabla \times \bar{A}\acute{\ }(\bar{q},t)=\nabla \times \left( \bar{A}(\bar{q},t)+\nabla \chi (\bar{q},t) \right)=\bar{B}(\bar{q},t) \\ \end{align}</math> Betrachten wir die Lagrangefunktion, so ergibt sich: :<math>\begin{align} & L\acute{\ }(q,\dot{q},t)=\frac{m}{2}{{{\dot{\bar{q}}}}^{2}}+e\left( \dot{\bar{q}}\bar{A}\acute{\ }(\bar{q},t)-\Phi \acute{\ }(\bar{q},t) \right) \\ & L\acute{\ }(q,\dot{q},t)=\frac{m}{2}{{{\dot{\bar{q}}}}^{2}}+e\left( \dot{\bar{q}}\bar{A}(\bar{q},t)+\dot{\bar{q}}\cdot \nabla \chi -\Phi (\bar{q},t)+\dot{\chi } \right) \\ & L\acute{\ }(q,\dot{q},t)=L+e\left( \dot{\chi }+\dot{\bar{q}}\cdot \nabla \chi \right)\acute{\ }=L+\frac{d}{dt}\left( e\chi (\bar{q},t) \right) \\ \end{align}</math> Einsetzen zeigt: L´ führt zu denselben Lagrangegleichungen wie L. {{Def|Die Eichtransformation :<math>L(q,\dot{q},t)\to L\acute{\ }(q,\dot{q},t)=L+\frac{d}{dt}\left( M(\bar{q},t) \right)</math> mit einer beliebigen Eichfunktion M (skalar) läßt die Lagrangegleichungen invariant.|Eichtransformation}} Allgemein gilt: Sei <math>M(\bar{q},t)=M({{q}_{1}},...,{{q}_{f}},t)\in {{C}^{3}}</math> beliebig und :<math>\begin{align} & L\acute{\ }(q,\dot{q},t)=L+\left( \dot{M}+\dot{\bar{q}}\cdot \nabla M \right)=L+\frac{d}{dt}\left( M(\bar{q},t) \right) \\ & L\acute{\ }(q,\dot{q},t)=L+\sum\limits_{k=1}^{f}{\frac{\partial M}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial M}{\partial t}} \\ \end{align}</math> dann erfüllen die :<math>\left\{ {{q}_{k}}(t) \right\}</math> das hamiltonsche Prinzip Also: :<math>\delta \int{L\acute{\ }dt=0\Leftrightarrow \delta \int{Ldt=0}}</math> Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art :<math>L(q,\dot{q},t)\to L\acute{\ }(q,\dot{q},t)=L+\frac{d}{dt}\left( M(\bar{q},t) \right)</math> mit <math>M(\bar{q},t)=M({{q}_{1}},...,{{q}_{f}},t)\in {{C}^{3}}</math> beliebig. '''Beweis:''' :<math>\begin{align} & \frac{\partial L\acute{\ }}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L\acute{\ }}{\partial {{{\dot{q}}}_{k}}}=\frac{\partial L}{\partial {{q}_{k}}}+\frac{\partial }{\partial {{q}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right)-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{d}{dt}\frac{\partial }{\partial {{{\dot{q}}}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right) \\ & =\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}+\frac{\partial }{\partial {{q}_{k}}}\frac{dM}{dt}-\frac{d}{dt}\frac{\partial M}{\partial {{q}_{k}}}=\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}} \\ \end{align}</math> mit <math>\frac{\partial }{\partial {{{\dot{q}}}_{k}}}\left( \sum\limits_{l=1}^{f}{\frac{\partial M}{\partial {{q}_{l}}}{{{\dot{q}}}_{l}}+\frac{\partial M}{\partial t}} \right)=\frac{\partial M}{\partial {{q}_{k}}}</math> Einzige Nebenbedingung: :<math>M(\bar{q},t)=M({{q}_{1}},...,{{q}_{f}},t)\in {{C}^{3}}</math> darf nicht explizit von :<math>{{\dot{q}}_{k}}</math> abhängen. {{Beispiel|'''Beispiel: eindimensionaler Oszi''' :<math>L=T-V=\frac{m}{2}{{\dot{q}}^{2}}-\frac{m{{\omega }^{2}}}{2}{{q}^{2}}</math> Beispielhafte Eichfunktion: :<math>M(q):=\frac{m{{\omega }^{2}}}{2}{{q}^{2}}\Rightarrow \frac{dM}{dt}=m{{\omega }^{2}}q\dot{q}</math> :<math>L\acute{\ }=\frac{m}{2}{{\dot{q}}^{2}}-\frac{m{{\omega }^{2}}}{2}\left( {{q}^{2}}-2q\dot{q} \right)</math> Die Lagrangegleichungen lauten: :<math>\begin{align} & \frac{d}{dt}\frac{\partial L\acute{\ }}{\partial {{{\dot{q}}}_{{}}}}=m\ddot{q}+m{{\omega }^{2}}\dot{q} \\ & \frac{\partial L\acute{\ }}{\partial {{q}_{k}}}=-m{{\omega }^{2}}q+m{{\omega }^{2}}\dot{q} \\ \end{align}</math> Es folgt als Bewegungsgleichung :<math>\ddot{q}+{{\omega }^{2}}q=0</math>}}
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Anker
(
edit
)
Template:Anker/code
(
edit
)
Template:Beispiel
(
edit
)
Template:Def
(
edit
)
Template:FB
(
edit
)
Template:ScriptProf
(
edit
)
Template:Scripthinweis
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects