Editing Dynamik des 2- Zustands- Systems

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 6: Line 6:
Somit:
Somit:


:<math>\hat{V}=-\frac{e\hbar }{2{{m}_{0}}}\hat{\bar{\sigma }}\cdot \bar{B}=-\frac{e\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}=\hbar {{\omega }_{l}}{{\hat{\bar{\sigma }}}_{3}}</math>
<math>\hat{V}=-\frac{e\hbar }{2{{m}_{0}}}\hat{\bar{\sigma }}\cdot \bar{B}=-\frac{e\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}=\hbar {{\omega }_{l}}{{\hat{\bar{\sigma }}}_{3}}</math>


{{Def|Mit der '''Larmor-Frequenz''' <math>{{\omega }_{l}}:=\frac{|e|B}{2{{m}_{0}}}</math>|Larmor-Frequenz}}
{{Def|Mit der '''Larmor-Frequenz''' <math>{{\omega }_{l}}:=\frac{|e|B}{2{{m}_{0}}}</math>|Larmor-Frequenz}}
Line 17: Line 17:
:<math>\frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =\frac{i}{\hbar }\left\langle \left[ H,{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =i{{\omega }_{l}}\left\langle \left[ {{{\hat{\bar{\sigma }}}}_{3}},{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle </math>
:<math>\frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =\frac{i}{\hbar }\left\langle \left[ H,{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =i{{\omega }_{l}}\left\langle \left[ {{{\hat{\bar{\sigma }}}}_{3}},{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle </math>


:<math>\begin{align}
<math>\begin{align}
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle  \\
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle  \\
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle =2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle  \\
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle =2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle  \\
Line 28: Line 28:
Die zeitliche Unabhängigkeit der Spin3- Komponente liegt dabei alleine an der Wahl des Koordinatensystems, bzw. der Basis! Wir haben diese gerade so gewählt, dass die 3- Komponente zeitlich unabhängig wird.
Die zeitliche Unabhängigkeit der Spin3- Komponente liegt dabei alleine an der Wahl des Koordinatensystems, bzw. der Basis! Wir haben diese gerade so gewählt, dass die 3- Komponente zeitlich unabhängig wird.
Die Lösung der Diffgleichung liefert:
Die Lösung der Diffgleichung liefert:
:<math>\begin{align}
<math>\begin{align}
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right)+{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right)+{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right)-{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right)-{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right) \\
Line 38: Line 38:
Wähle:
Wähle:
o.B. d.A.:
o.B. d.A.:
:<math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}=0</math>
<math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}=0</math>


Wir können uns den Betrag des Erwartungswertes des gesamten Spinvektors ansehen und es zeigt sich :
Wir können uns den Betrag des Erwartungswertes des gesamten Spinvektors ansehen und es zeigt sich :
Line 56: Line 56:


Dabei muss der Zustand <math>\left| a(t) \right\rangle </math>  in der Spinbasis entwickelbar sein:
Dabei muss der Zustand <math>\left| a(t) \right\rangle </math>  in der Spinbasis entwickelbar sein:
:<math>\left| a(t) \right\rangle ={{a}_{1}}(t)\left| \uparrow  \right\rangle +{{a}_{2}}(t)\left| \downarrow  \right\rangle </math>
<math>\left| a(t) \right\rangle ={{a}_{1}}(t)\left| \uparrow  \right\rangle +{{a}_{2}}(t)\left| \downarrow  \right\rangle </math>


'''Matrix- Darstellung:'''
'''Matrix- Darstellung:'''
Line 76: Line 76:
Die Lösung lautet:
Die Lösung lautet:


:<math>\begin{align}
<math>\begin{align}
& {{a}_{1}}(t)={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}} \\
& {{a}_{1}}(t)={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}} \\
& {{a}_{2}}(t)={{a}_{20}}{{e}^{i{{\omega }_{l}}t}} \\
& {{a}_{2}}(t)={{a}_{20}}{{e}^{i{{\omega }_{l}}t}} \\
\end{align}</math>
\end{align}</math>


:<math>\left| a(t) \right\rangle ={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}}\left| \uparrow  \right\rangle +{{a}_{20}}{{e}^{i{{\omega }_{l}}t}}\left| \downarrow  \right\rangle </math>
<math>\left| a(t) \right\rangle ={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}}\left| \uparrow  \right\rangle +{{a}_{20}}{{e}^{i{{\omega }_{l}}t}}\left| \downarrow  \right\rangle </math>


Nebenbemerkung: Hieraus gewinnt man <math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{j}} \right\rangle }_{t}}</math>, also die Spinpräzession wie oben!
Nebenbemerkung: Hieraus gewinnt man <math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{j}} \right\rangle }_{t}}</math>, also die Spinpräzession wie oben!
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)