Editing
Quantentheoretischer Zugang
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Großer Kasten, dichtliegende Zustände== in einem großen Kasten sollen die Randbeingungne nicht so wichtig sien, Modell für makroskopischen Körper, nehmen periodische Randbedingungen :<math>{{\varphi }_{n}}\left( x=0,y,z \right)={{\varphi }_{n}}\left( x=L,y,z \right)\quad \forall {{x}_{i}}</math> periodisch angeordnete Kästen nebeneinander '''Ansatz''': freie Teilchen im Kasten: <math>{{e}^{i\vec{k}.\vec{r}}}</math> :<math>\begin{align} & \Rightarrow {{e}^{i\vec{k}.\vec{r}}}={{e}^{i\vec{k}.\left( \vec{r}+\vec{L} \right)}},\quad \vec{L}=\left( L,L,L \right) \\ & \Rightarrow {{e}^{i\vec{k}.\vec{r}}}=1\text{ w }\!\!\ddot{\mathrm{a}}\!\!\text{ hlen} \\ & \Rightarrow {{k}_{i}}=\left( {{k}_{x}},{{k}_{y}},{{k}_{z}} \right):\,\,{{k}_{i}}=\frac{2\pi }{L}{{m}_{i}},\,\,{{m}_{i}}\in \mathbb{Z} \\ \end{align}</math> Damit sind die Quantenzahlen k_i im großen (makroskopischen) Kasten festgelegt als: :<math>\begin{align} & {{\varphi }_{{\vec{k}}}}=\frac{1}{\sqrt{V}}{{e}^{i\vec{k}.\vec{r}}},{{k}_{i}}=\frac{2\pi }{L}{{m}_{i}},\,\,{{m}_{i}}\in \mathbb{Z} \\ & \vec{k}.\vec{r}=\sum\limits_{i}{{{k}_{i}}{{x}_{i}}} \\ \end{align}</math> man kann mit den ebenen Wellen besser als mit den Sinusfunktionen rechen, weil: man oft Quantenzahlen bzw. Zuständer zählen mus (wie in der klassichen Statiski beim Würfel =6) k's zu zählen ist oft leichter als n's z.B <math>\sum\limits_{\text{Zust }\!\!\ddot{\mathrm{a}}\!\!\text{ nde}}{...}\triangleq \sum\limits_{\text{k }\!\!'\!\!\text{ s}}{...}</math> :<math>{{\sum }_{\vec{k}\in \text{3-Dim Raum}}}=\sum\limits_{\text{k}}{\frac{{{\Delta }^{\text{3}}}k}{\underbrace{{{\Delta }^{\text{3}}}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int{{{d}^{\text{3}}}k}</math> :<math>\Delta k</math> sind dicht ~ <math>\frac{1}{L}\to \int_{{}}^{{}}{{}}</math> Summe über die k-Quantenzahlen werden also So übersetzt:<math>{{\sum }_{k}}\triangleq {{\left( \frac{L}{2\pi } \right)}^{3}}\int{{{d}^{\text{3}}}k}</math>
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
⧼visualeditor-ca-editsource⧽
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
wikibase-otherprojects