Mehrkomponentige ideale Gase

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=4}} Kategorie:Thermodynamik __SHOWFACTBOX__


In einem Volumen V befinden sich mehrere ideale Gase (Komponenten i=1,2,...) von jeweils ni mol:

ideale Mischung (keine WW zwischen den Komponenten):

Freie Energie

Thermische Zustandsgleichung

(Gesamtzahl der Mole)

Definition: Partialdruck:

  • jede Komponente verhält sich so, als wäre sie unabhängig von den anderen Komponenten mit ihrem Partialdruck pi im Volumen V vorhanden!

Daltonsches Gesetz[edit | edit source]

xi: sogenannter Molenbruch!

Bemerkung

In einer sehr verdünnten Lösung verhält sich der gelöste Stoff ebenfalls wie ein ideales Gas.

  • osmotischer Druck:

Osmotischer Druck

Mischungsentropie[edit | edit source]

Zwei ideale Gase befinden sich in einem Wärmebad T

Trennwand entfernt → Durchmischung!!


Vor der Durchmischung:

Entropie mit

Nach der Durchmischung

Entropie mit

Also ergibt sich als Entropie- Differenz:

  • der Mischungsvorgang ist irreversibel!

Entropie und spezifische Wärme[edit | edit source]

mittels

(Im Normalbereich, also wenn

temperaturunabhängig)

und

Weiter gilt für die spezifischen Wärmekapazitäten:

Chemisches Potenzial:[edit | edit source]

pro Molekül:

pro Mol:

(Gibbs- Duhem)

Mit

(molare Gibbsche freie Energie)

Also:

Dies gilt nicht nur für die Mischung idealer Gase, sondern ganz allgemein für IDEALE MISCHUNGEN, z.B. verdünnte Lösungen, bei denen die Komponenten nicht miteinander chemisch reagieren!