Gamma-Zerfall

From testwiki
Jump to navigation Jump to search

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::13Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=13|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__

miniatur|zentriert|hochkant=3|-Zerfall


Erhaltungssätze[edit | edit source]

Energie

(genauer abzüglich der Rückstoßenergie ER wegen

z.B: also


Drehimpuls
der vom -Quant weggeführte Drehimpuls, Multipolentwicklung
Parität
Parität der entsprechenden Multipolstrahlung

Multipolordnung :

L=1
Dipol
L=2
Quadrupol
L=3
Oktupol

...etc.

Elektrische und magnetische Multipole:

  • E1 E2 E3 ...
  • M1 M2 M3 ...

mit unterschiedlicher Parität:


Danach wird beispielsweise für den Übergang 2+ --> 0+ nur E2-Strahlung emittiert, während für einen -Übergang theoretisch M4-, E3-, M2- und E1-Strahlung auftreten könnte. Da die Übergangswahrscheinlichkeit für wachsende Multipolordnung sehr stark abnimmt, kommt in der Praxis nur die niedrigste Ordnung - hier nur E1 - vor.

Abschätzung der übergangswahrscheinlichkeiten[edit | edit source]

Allgemein für die pro zeiteinheit abgestrahlte Energie einer mit der Beschleunigung b bewegten Ladung e:


Für einen elektischen Dipol gilt für die mittlere abgestrahlte Energie wegen und


Die pro Zeiteinheit abgestrahlten photonen erhält man nach Division von zu:


Für eine grobe Abschätzung ersetzt man durch den Kernradius R. Damit ist die entscheidende Größe das Verhältnis von Kernradius zur Wellenlänge/2 der Strahlung. Mit und ergibt sich für mittelschwere Kerne und für dieses Verhältnis . Wegen für erhält man für die übergangswahrscheinlichkeit . Für höhere elektrische Multipole wird der Faktor durch ersetzt. Aufeinanderfolgende Multipolordnungen unterscheiden sich also bei um ca. 4 - 5 Größenordnungen.


Für magnetische Dipolstrahlung wird eR durch ersetzt. Magnetische und elektrische Dipolübergänge unterscheiden sich demnachbei den Übergangswahrscheinlichkeiten um den Faktor . Aus der Unschärferelation erhält man für diesen Faktor . Für höhere magnetische Multipolordnungen wird durch ersetzt, so daß dieser Faktor auch für höhere Multipolordnungen gilt. Zusammenfassend:


Die experimentellen Werte sind für E1 um ca. langsamer, für E2 um ca schneller und für die übrigen Übergänge um ca. langsamer als die (Blatt-Weisskopf)-Abschätzungen.


Bei hohen Kernspindifferenzen zwischen den Übergangsniveaus ergeben sich sehr große Halbwertzeiten (sec <-> Jahre) des angeregten Niveaus (isomere Zustände). Sie häufen sich für Kerne mit Z oder N kurz vor Erreichen der magischen Zahlen 50, 82, 126.


Bei hohen Multipolordnungen und/oder kleinen Übergangsenergien tritt als Konkurrenzprozeß die innere Konversion{{#set:Fachbegriff=innere Konversion|Index=innere Konversion}} in den Vordergrund, bei der statt eines -Quants ein Hüllenelektron mit ( Bindungsenergie) emittiert wird. Dieser Effekt entspricht dem Augereffekt{{#set:Fachbegriff=Augereffekt|Index=Augereffekt}} in der Atomhülle.