Wahrscheinlichkeitsbegriff
65px|Kein GFDL | Der Artikel Wahrscheinlichkeitsbegriff basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 1.Kapitels (Abschnitt 1) der Thermodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=1}} Kategorie:Thermodynamik __SHOWFACTBOX__
- Ereignis
- Messergebnis von Observablen (event) oder fester Mikrozustand (der realisiert wird).
Ereignisse bilden einen Abelschen Verband{{#set:Fachbegriff=Abelschen Verband|Index=Abelschen Verband}} (Ereignisalgebra)
Merke: Ereignisalgebra = Abelscher verband
mit Mengentheoretischen Verknüpfungen
Vereinigung (oder) und Durchschnitt (und)
(Kommutativitätsgesetz)
Assoziativität
(Verschmelzungsgesetz)
Distributivgesetz
Existenz der Eins (sicheres Ereignis) und Existenz des Nullelements: "leeres Ereignis"
Existenz des Komplements
Induzierte Halbordnung[edit | edit source]
Also: menge A liegt in B
Vollständig disjunkte Ereignismenge (sample set)
Beispiel:
Ereignismenge
Bemerkung: Diese Menge M ist keine Algebra, da
Wahrscheinlichkeit[edit | edit source]
Empirische Definition
mit
relative Häufigkeit des Ereignisses A
N(A) ist die Zahl der Experimente mit dem Ergebnis A
N ist die Zahl der Experimente insgesamt
axiomatische Definition (Kolmogoroff)[edit | edit source]
(Boolscher Verband)
Sei
das sichere Ereignis.
Dann erfüllt die Wahrscheinlichkeit P(A)
die Axiome:
Für disjunkte Ereignisse:
Folgerung
Zerlegung in disjunkte Ereignisse[edit | edit source]
für beliebige A1, A2:
Also folgt für Wahrscheinlichkeiten:
Also:
Speziell
falls
bedingte Wahrscheinlichkeit[edit | edit source]
Die Bedingte Wahrscheinlichkeit (A unter der Bedingung, dass B), ergibt sich gemäß
Also A unter der Bedingung, dass B eingetreten ist!
Falls A von B unabhängig ist, so gilt:
Nebenbemerkung, ebenso gilt:
Zufallsvariablen[edit | edit source]
Eine Zufallsvariable ist gegeben durch
- eine Menge M von vollständig disjunkten Ereignissen (sample set)
- eine Wahrscheinlichkeitsverteilung
- über M
es gilt die Normierung
Definiert man sich dies für eine kontinuierliche Menge, also ,
so gilt:
definiert eine Wahrscheinlichkeitsdichte oder auch Wahrscheinlichkeitsverteilung .
Übergang zu diskreten Ereignissen:
mit Normierung
Physikalische Interpretation[edit | edit source]
Die Wahrscheinlichkeitsverteilung kann man sich realisiert denken durch ein Ensemble von vielen äquivalenten Systemen, also durch eine Dichteverteilung
der Mitglieder des Ensembles mit Werten zwischen x und x+dx
Verallgemeinerung auf d Zufallsvariablen
Die Normierung geschieht dann in einem d- Dimensionalen Raum.
Mittelwert (Erwartungswert) einer Zufallsvariablen x:
für eine beliebige Funktion f(x):
Nebenbemerkung
Der Mittelwert ist ein lineares Funktional
Linearität:
Unkorrelierte Zufallsvariable:
x1 und x2 heißen unkorreliert, falls
Dann gilt:
Beweis:
Merke: In Bezug auf die Wahrscheinlichkeitsverteilungen ist unkorreliert gleichbedeutend mit separabel _> die Phasen werden addiert!
Sind die Zustände verschränkt, so können die Phasen nicht addiert werden.
Die Einführung einer Symplektik ist nötig! (siehe unten).
Zusammenhang zwischen Wahrscheinlichkeitsverteilung und Mittelwerten[edit | edit source]
Wir verstehen als n.tes Moment einer Wahrscheinlichkeitsverteilung:
Momentenerzeugende:
Durch die Angabe aller nicht verschwindender Momente ist eine Wahrscheinlichkeitsverteilung vollständig festgelegt!
Verallgemeinerung auf d Zufallsvariablen:[edit | edit source]
ein Moment der Ordnung
Momentenerzeugende:
Kumulante
ist definiert durch die Kumulantenerzeugende:
Eigenschaft
Kumulanten sind ADDITIV für unkorrelierte Zufallsvariablen (Dies gilt nicht für die Momente!!)
Beweis: seien x1, x2 unkorreliert:
Fluktuation:
mit
Bildung der Varianz:
Als Maß für die Breite einer Verteilung
Korrelationsmatrix:
Nichtdiagonalelemente verschwinden für unkorrelierte Zufallsvariablen. Denn dann: separieren die Momente der WSK- Verteilung! Siehe oben
- Korrelationsmatrix beschreibt die qm- Korrelationen über ihre Außerdiagonalelemente
Zusammenhang zwischen Kumulanten und Momenten:[edit | edit source]
Gaußverteilung / Normalverteilung[edit | edit source]
Mit Sigma als Standardabweichung
Normierung:
Wegen:
Nebenbemerkung, die Gaußverteilung ist bestimmt durch .
Alle höheren Kumulanten verschwinden!