Beta-Zerfall
65px|Kein GFDL | Der Artikel Beta-Zerfall basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 12.Kapitels (Abschnitt 0) der Kern- und Strahlungsphysikvorlesung von Prof. Dr. P. Zimmermann. |
|}}
{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::12Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=12|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__
reduziert formuliert als
Beta-Zerfall energetisch möglich --> siehe Isobarenregel{{#set:Fachbegriff=Isobarenregel|Index=Isobarenregel}} als Folgerung aus der Weizsäckerschen Massenformel
miniatur|hochkant=3|zentriert|Schema beta Strahlung
Beim ß-Zerfall ist neben der Halbwertzeit{{#set:Fachbegriff=Halbwertzeit|Index=Halbwertzeit}} das Energie bzw. Impulsspektrum der Elektronen{{#set:Fachbegriff=Impulsspektrum der Elektronen|Index=Impulsspektrum der Elektronen}} (Positronen) meßbar. Ein theoretischer Ansatz muß die Form des Impulsspektrums , d. h. die Wahrscheinlichkeit für die Emission eines Elektrons (Positrons) mit dem Impuls wiedergeben. Die Intergration über alle ergibt die Gesamtübergangswahrscheinlichkeit{{#set:Fachbegriff=Gesamtübergangswahrscheinlichkeit|Index=Gesamtübergangswahrscheinlichkeit}} und damit die Halbwertzeit .
Fermi-Ansatz [1] in Analogie zu elektromagnetischen
Übergängen. Störungstheorie (Fermis Goldene Regel)
miniatur|Fermi-Ansatz Störungstheorie (Fermi Goldene Regel)
- -Leptonen- Wellenfunktion
- -Nukleonen Wellenfunktion
- (Integration wegen Nukleonen-WF nur über das Kernvolumen)
Bei Leptonen-WF Ansatz freier Teilchen, d. h. auslaufende ebene Wellen
Bei der Integration kann man zunächst alle Anteile mit vernachlässigen, da für und für alle gilt:
und damit . Man betrachtet die Leptonenwellenfunktionen also als konstant im Bereich des Kernvolumens. Diese Näherung ist gleichbedeutend mit der Annahme, daß bei der Leptonenemission{{#set:Fachbegriff=Leptonenemission|Index=Leptonenemission}} kein {{FB|Bahndrehimpuls} weggetragen wird ("erlaubte" Übergänge. ).
miniatur|"klassische" Deutung Bei ist nur n = 0 maßgebend Den Wechselwirkungsoperator ersetzt man durch die Kopplungskonstante g, so daß insgesamt unabhängig von pe wird und die Abhängigkeit des Impulsspektrums allein im statistischen Faktor (der Dichte der Endzustände) steckt.
Allgemein bei freien Teilchen , somit bei gleichzeitiger Emission beider Leptonen mit (Neutrinomasse = 0 gesetzt). Damit wird das Impulsspektrum :
Durch Extrapolation bei der Fermi-Darstellung{{#set:Fachbegriff=Fermi-Darstellung|Index=Fermi-Darstellung}} Bestimmung von . Damit auch die Möglichkeit zur Bestimmung einer möglichen Neutrinomasse, deren Existenz einen großen Einfluß auf Struktur und Entwicklung des Universums hat. Dabei wegen Fehlerabschätzung E0 möglichst klein wählen, z. B. Tritium-Zerfall mit [ zur Zeit ].
Integration über Impulsspektrum:
Die f-Werte sind tabelliert [2]. Sie enthalten die gesamte Energieabhängigkeit.
Grobe Abschätzung:
Bei genauerer Betrachtung muß man berücksichtigen, daß die Spins
der beiden Leptonen parallel (Gamow-Teller-Übergänge{{#set:Fachbegriff=Gamow-Teller-Übergänge|Index=Gamow-Teller-Übergänge}}) oder antiparallel
(Fermi-Übergänge{{#set:Fachbegriff=Fermi-Übergänge|Index=Fermi-Übergänge}}) stehen können. Für erlaubte Übergänge
() gelten somit die Auswahlregeln:
anschaulich:
Verbotene Übergänge:[edit | edit source]
Merkmal: größere Drehimpulsänderungen, größere ft1/ 2-Werte Beiträge für diese Übergänge aus: a) Reihenentwicklung der Leptonenwellenfunktionen
b) relativistische Wellenfunktionen der Nukleonen mit vN/c-Beiträge
Beispiele für erlaubte und verbotene Übergänge:
Einzelnachweise[edit | edit source]
Weitere Informationen[edit | edit source]
(gehört nicht zum Skript)
Prüfungsfragen[edit | edit source]
- ß Übergänge: Prinzipielle Reaktionsgleichung + Bethe-Weizsäcker
- Neutrinos: Was ist das wozu braucht man die (beim ß Zerfall)
- Besonderheit beim ß Zerfall? (siehe Kapitel Paritätsverletzung)
- Übergangsraten aus Fermis goldener Regel ("grobe" Herleitung)
- Fermi- und GT-Übergänge