Neutrinoexperimente
65px|Kein GFDL | Der Artikel Neutrinoexperimente basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 14.Kapitels (Abschnitt 0) der Kern- und Strahlungsphysikvorlesung von Prof. Dr. P. Zimmermann. |
|}}
{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::14Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=14|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__
a) indirekt über Rückstoßkern b) direkt über inversen ß-Zerfall
Rückstoßexperimente
Am besten Elektroneneinfang{{#set:Fachbegriff=Elektroneneinfang|Index=Elektroneneinfang}} wegen 2-Körperproblem{{#set:Fachbegriff=2-Körperproblem|Index=2-Körperproblem}}, gut geeignet z.B.
Rückstoßenergie durch Flugzeitmessung: Rückstoßgeschwindigkeit v: Exp. von Rodebach und Allen [1] durch Koinzidenz von dem schnellen Augerelektronen{{#set:Fachbegriff=Augerelektronen|Index=Augerelektronen}}signal (Startsignal) und dem (verzögerten) Ionensignal (), das bei einer Wegstrecke von z.B. eine Flugzeit von benötigt.
Inverser ß-Zerfall
Wirkungsquerschnitt{{#set:Fachbegriff=Wirkungsquerschnitt|Index=Wirkungsquerschnitt}} für
miniatur|hochkant=3|Bedeutung von
Festkörper z.B. Wasser Mo1eküle / cm³
Wahrscheinlichkeit für eine Reaktion
z.B. Kerne/cm³, Targetlänge 1 = gesamte Erde = 1,2 cm
Starke Neutrinoguellen
Reaktor Antineutrino-Quelle
Spaltprodukte wegen Neutronenüberschuß{{#set:Fachbegriff=Neutronenüberschuß|Index=Neutronenüberschuß}} -Strahler, die Antineutrino{{#set:Fachbegriff=Antineutrino|Index=Antineutrino}}s emittieren.
Pro Spaltung ca., daraus '-Produktion aus Reaktorleistung berechenbar:
Pro Spaltung wird ca. 200 MeV= 3,2 10-17 MWs frei, d. h. bei Leistung
Sonne Neutrinoquelle
Da bei der Fusion{{#set:Fachbegriff=Fusion|Index=Fusion}} aus H --> He entsteht, müssen dabei ebenso Neutrino{{#set:Fachbegriff=Neutrino|Index=Neutrino}}s entstehen. Fusion: , d.h. pro 10 MeV Fusionsenergie entsteht ca. 1 .
Damit Neutrinofluß auf der Erde aus Solarkonstante umgerechnet: S = 1,4 kW/m² 1 10 MeV = 1,6 10-12 Ws
Erstes Experiment von Reines und Cowan [2] mit Reaktorantineutrinos. (Los Alamos) Das Meßprinzip beruht darauf, daß bei einer möglichen Reaktion v+p -+ n + e+ die beiden Vernichtungsquanten aus der Positronzerstrahlung e+ + e- -+ 2 ~ (E~ = 0,5 MeV) und nach einer bestimmten Abbrems zeit durch Neutroneneinfang von 113Cd mehrere ~ aus dem Kaskadenzerfall des hochangeregten 114Cd (E ~ 9 MeV) in Mehrfachkoinzidenz gemessen werden. miniatur|zentriert|hochkant=3
Grobe Abschätzung der Zählrate:Bedeutung von u: 10 Gl ) I = I e-UNI 0 N Kerne/cm-3 1 Festkörper z.B. Wasser N(H20) "" 3010 22 Mo 1 e ku" l e / cm 3 uNI = Wahrscheinlichkeit für eine Reaktion Eo "" E~ 1/ z.B. N "" 1023 Kerne/cm3, Targetlänge 1 = gesamte Erde = 1,2 010 9 cm ~ u NI "" 10-44 cm201023 cm- 30 1,2 0109 cm "" 10-12 a (Reaktor-v) "" 10-47mZ, Reaktor L "" 10 MW ~ 2.1018v/s Fluß in ca. 1 m Abstand e "" 1017v/m2.s, Targetfläche F = 7,6 cm • 150 cm"" 0,1 mZ, d. h. ca. 1016v/s durch Target von ca. 2 m Länge. Reaktionswahrscheinlichkeit aNl "" 10-47m2.10Z9m-3.2m "" 10-18 Zählrate/s "" 1016s-1.10-18 ~ 10-Zs-1 Großer Untergrund durch Reaktor und kosmische Strahlung. Erste Ergebnisse in Zählrate/min: 2,55 ± 0,15 Reaktor an 2,14 ± 0,13 Reaktor aus 0,41 ± 0,20/min v ~ 'v"- Experiment [3] Prinzip e- + 37Ar ---) 37Cl + v f~ 37Cl + 'v" ~'Reaktor 4000 1 CC14 wurden 30-70 Tage mit Reaktor-v bestrahlt und etwa gebildetes 37Ar durch Aktivitätsmessung gezählt -+ Negatives Ergebnis.