Kernkräfte

From testwiki
Jump to navigation Jump to search

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::8Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=8|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__


Wegen B/Aconst Kräfte immer nur zwischen zwei Nukleonen. Einfachste Modellsysteme:

  • a) das Deuteron und
  • b) n-p Streuung


Deuteron

Das Deuteron als einfachstes gebundenes Nukleonensystem mit folgenden Eigenschaften

1) Bindungsenergie n+pd+2,2MeV
2) Kernspin{{#set:Fachbegriff=Kernspin|Index=Kernspin}} I=1, magnetisches Kerndipolmoment{{#set:Fachbegriff=magnetisches Kerndipolmoment|Index=magnetisches Kerndipolmoment}} μI=0,857...μK (μIμp+μn=0,879...μKI=12+12,3S1-Zustand) elektrisches Quadrupolmoment Q=+2,861031m2=2,7mb, d.h. sehr klein
3) es existiert kein angeregter Zustand, außerdem gibt es kein Diproton oder Dineutron.

Reduktion des Zweikörperproblem{{#set:Fachbegriff=Zweikörperproblem|Index=Zweikörperproblem}}s durch Relativkoordinate r=rrn und red. Masse μ=mpmnmp+mn12mp

Schrödingergleichung [22μ2+V]Ψ=EΨ

Problem E=2,2MeV bekannt, V unbekannt.

Annahme: V=V(r) Zentralpotential. Separationsansatz von Radial- und Winkelteil Ψnlm=Rnl(r)Ylm(θ,ϕ)

Radialteil [22μd2dr2+V(r)+l(l+1)22μr2](rRnl)=Enl(rRnl) mit l(l+1)22μr2 Zentrifugalpotential

Zentrifugalpotential abstoßend --> Grundzustand 1 = 0 (wird durch I = 1 und μIμn+μp unterstützt). (rRnl)=(rRl0)=u

Erste (grobe) Annahme von V(r): Kastenpotential (V0,r0 ) miniatur|Trennung der Radialgleichung in Innen(I)- und Außen (II)-Bereich

Innen (I): rr0d2udr2+2μ2(EV0)u=0 , K=2μ(EV0)2

Lösung u=AsinKr+CcosKrRB:u=AsinKr RB: u=0 für r0 wegen u/r endlich C = 0


Außen (II): rr0d2udr2+2μ2(E)u=0 , k=2μE2=[4,31015m]1

Lösung u=Bekr+Dekr=Bek(rr0) RB: u = A \sin Kr</math> RB: u0 für r D=0


Stetiger Anlschluß von u und dudr bei r=r0:

AsinKr0=BKAcosKr0=B(k)KctgKr0=k

Damit werden die beiden Parameter (V0,r0) des Kastenpotentials miteinander verknüpft, z.B. mögliche Wertepaare

r0=1,4×1015m,2×1015mV0=50MeV,30MeV

miniatur

Da für I=12+12 nur I = 1 existiert, sind die Kernkräfte spinabhängig, wobei nur das Triplettpotential bindend ist. Erklärt auch die Nichtexistenz von p2 und n2 durch das Pauli-Prinzip.



Grobe Abschätzung für Singulett-Potential:

Falls Vs gerade nicht mehr bindend sinKr01 senkrecht auf Potentialwand, so daß man keine abnehmende Exponentialfunktion im Außenraum anfügen kann.

Kr0π2 bedeutet in Zahlenwerten |V0|r02100,V0[MeV],r0[1015m]


Die Existenz des (sehr kleinen) Quadrupolmoments bedeutet einen sehr kleinen Beitrag einer nichtzentralen Kraft, die eine 3D1-Zumischung ermöglicht.

n-p Streuung

Wirkungsquerschnitt σ[m2]

Datei:8.3.Wirkungsquerschnitt.png

σ als "Trefferfläche" , z.B. σ(geom.)=πR210291028m2(1028m2=1b). Festkörpertarget N1022 Kerne/cm³, σ1028m3, Targetlänge z.B. 1=102mσNl103102 , d.h. "dünnes" Target mit I=I0(lσNl).


Kinematik: mpmn, "Billardproblem"

Datei:8.4.Zweikoerperproblem.png

21 Körperproblem: Stoß zweier Teilchen gleicher Masse im CM-System ist äquivalent dem Stoß eines Teilchens mit reduzierter Masse μ=m/2 und E=ELAB/2 an einem festen Streuzentrum bei r=rprp0.

Quantenmechanische Formulierung des Streuproblems

Datei:8.5.Streuproblem.Quantenemechanische.Formulierung.png


differentieller Wirkungsquerschnitt{{#set:Fachbegriff=differentieller Wirkungsquerschnitt|Index=differentieller Wirkungsquerschnitt}} dσ/dn in Raumwinkel dΩ:

dσdn= Fluss der gestreuten Teilchen in Raumwinkel dΩ(Detektor)Fluss der einlaufenden Teilchen pro Einheitsflaeche
Fluß der einfallenden Teilchen
|eikz|2v, |eikz|2 1 Teilchen pro Raumeinheit
Fluß der gestreuten Teilchen in dΩ:|eikrf(θ)|2r2v
dσdΩ=|f(θ)|2 Quadrat der Streuamplitude f(θ)


Speziell für isotrope Streuung (f(σ)=const.) ist dann der (Gesamt)-Wirkungsquerschnitt σ=4π|f|2 .


Berechnung des Wirkungsquerschnitts:

Zunächst Entwicklung der einlaufenden ebenen Welle nach Kugelwellen.

eikz=eikrcosθ=1il(2l+1)jl(kr)P1(cosθ)
jl(kr) sphärische Besselfunktionen


Sinn: Bei niedrigen Energien (En10MeV) kann wegen der kurzen Reichweite der Kernkräfte nur der 1=O-Anteil (S-Wellen) gestreut werden. Teilchen mit 10 kommen bei diesen Energien nicht nahe genug heran. Quantitativ:

miniatur|zentriert|hochkant=3

Wegen k=2μE2=0,1512ELAB[MeV]1015ml und r0=1015m ist für ELABMeV die Bedingung kr01 erfüllt.

Der S-Wellenanteil der einlaufenden ebenen Welle lautet mit j0(kr):

(S-Wellenanteil) =sinkrkreikreikr2ikr eikr auslaufende Kugelwelle eikr einlaufende Kugelwelle

Nach dem "Durchlaufen" des Zentralpotentials V=V(r) bleiben der S-Wellencharakter, der Wellenvektor k und die Teilchenzahl erhalten. Deshalb kann es nur eine Phasenänderung in der auslaufenden Kugelwelle geben.

S-Wellenanteil nach Durchlaufen des Streupotentials:

ei(kr+2δ0)eikr2ikreiδ0sin(kr+δ0)kr

Die Differenz des S-Wellenanteils vor und nach der Streuung charakterisiert die qestreuten Teilchen, also die gestreute auslaufende Kugelwelle eikrrf(θ):

ei(kr+2δ0eikr2ikrei(kr+δ0)rsinδ0k

Damit gilt für den diff. Wirkungsquerschnitt in Abhängigkeit von der Streuphase δ0

dσdΩ=|f(θ)|2=sin2δ0k2

Berechnung der Streuphase mit einem Kastenpotential (V0,r0) über die Schrödingergleichung analog zum Deuteronproblem, jedoch E>O.

Innenbereich I Außenbereich 11
[h22μd2dr2+V0]u=Eu [h22μd2dr2+0]u=Eu
u=A1sinKr u=A1sin(kr+δ0)
K=2μ(EV0)2 k=2μ(E)2 (siehe eiδ0sin(kr+δ0)kr und Ψur

Stetige Anpassung für u und du/dr bei r=r0 ergibt

A1sinKr0=A2sin(kr0+δ0)=A2k(r0a)KA1cosKr0=kA2cos(kr0+δ0)=A2kKcotKr0=cot(kr0+δ0)=(r0a)1kK

Im niederenergetischen Bereich mit kK kann man die Sinusfunktion im Außenbereich durch eine Gerade ersetzen

uA2(kr+δ0)=A2k(ra) mit δ0=ka.


Die sogenannte Streulänge a ist der Schnittpunkt dieser Geraden mit der r-Achse. Je nachdem (V0,r0) für E0 bindend oder nichtbindend ist, ist a positiv oder negativ. Sehr große Werte für die Streulänge erhält man, wenn das Potential gerade noch (VT) oder gerade nicht mehr bindend (Vs) ist.


Datei:8.7.Wirkungsquerschnitt.Kasten.QM.png

Wirkungsquerschnitt σ=4π|f(θ)|2=4πsin2δ0k2=4πa2 unabhängig von E für den Bereich kK mit δ0=ka und a=r01KtgKr0. In der Streu1änge a sind wieder die beiden Parameter des Kastenpotentials (V0,r0) miteinander verknüpft.


Experimentell:

Datei:8.8.Wirkungsquerschnitt.Experimentell.png

Grobe Abschätzung aus Deuteronproblem ergibt für das Triplettpotential aT=5,7×1015m und damit σT4,5×1028m2 . Damit erhält man aus σ20×1028m2 für σs68×1028m2 und |as|=23×1028m2. Das negative Vorzeichen as<0 folgt aus Messungen der kohärenten Streuung am Para-Wasserstoff-Molekül.


Während der Bereich bis ca. 104 eV vom Sinulett-Potential beherrscht wird, tritt für den Bereich 104107 eV immer mehr das Triplett-Potential in den Vordergrund. Ab 107 eV müssen verstärkt höhere Bahndrehimpulsanteile berücksichtigt werden.


Bei einer feldtheoretischen Behandlung in Analogie zur Quantenelektrodynamik versucht man die Kernkräfte durch Mesonen-Austauschprozesse zu beschreiben. Dabei wird der "langreichweitige" Teil durch Ein-Pion-Austauschprozesse (Yukawa-Ansatz 1935) und der Bereich mittlerer Reichweite durch Zwei-Pion-Austauschprozesse beschrieben. Der "kurzreichweitige" Teil mit einem stark abstoßenden Anteil (hard core) muß durch den Austausch mehrerer Mesonen behandelt werden. Dabei spielen nicht nur die ω-Mesonen, sondern schwere Mesonen (z.B. das ω-Meson mit mc2=783MeV) wegen ihrer kleinen Compton-Wellenlänge eine besondere Rolle. Da Nukleonen und Mesonen ihrerseits aus Quarks zusammengesetzt sind, die von Gluonen zusammengehalten werden, muß eine genauere Feldtheorie der Kernkräfte auf diesen Teilchen aufbauen.

Ergänzende Informationen

(gehört nicht zum Skript)

Prüfungsfragen

  • Was ist das besondere der starken und schwachen WW? -> sehr kurze Reichweite
  • Analogie QCD -> \pi , QED -> \gamma (Quarks als Grundbaustein der Hadronen mit Gluonen als Austauschteilehen und Pionen als Austauschteilehen der Hadronen im Atomkern (Yukawa Potential), nur erwähnt, Quarks und Leptonen (speziell Elektronen) sind Punkteilchen)