Kernkräfte

From testwiki
Jump to navigation Jump to search

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::8Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=8|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__


Wegen B/Aconst Kräfte immer nur zwischen zwei Nukleonen. Einfachste Modellsysteme: a) das Deuteron und b) n-p Streuung


a) Deuteron als einfachstes gebundenes Nukleonensystem mit folgenden Eigenschaften

1) Bindungsenergie n+Pd+2,2MeV
2) Kernspin I=1, magn. Kerndipolmoment μI=0,857...μK (μIμp+μn=0,879...μKI=12+12,3Sl-Zustand) el. Quadrupolmoment Q=+2,861031m2=2,7mb, d.h. sehr klein
3) es existiert kein angeregter Zustand, außerdem gibt es kein Diproton oder Dineutron.


Reduktion des Zweikörperproblems durch Relativkoordinate r=rrn und red. Masse μ=mpmnmp+mn12mp

Schrödingergleichung [22μ2+V]Ψ=EΨ


Problem E=2,2MeV bekannt, V unbekannt. Annahme: V=V(r) Zentralpotential. Separationsansatz von Radial- und Winkelteil Ψnlm=Rnl(r)Ylm(θ,ϕ)


Radialteil [22μd2dr2+V(r)+l(l+1)22μr2](rRnl)=Enl(rRnl) mit l(l+1)22μr2 Zentrifugalpotential


Zentrifugalpotential abstoßend --> Grundzustand 1 = 0 (wird durch I = 1 und μIμn+μp unterstützt). (rRnl)=(rRl0)=u


Erste (grobe) Annahme von V(r): Kastenpotential (V0,r0 )


miniatur| Trennung der Radialgleichung in Innen (I)- und Außen (II)-Bereich

I rr0d2udr2+2μ2(EV0)u=0 , K=2μ(EV0)2

Lösung u=AsinKr+CcosKrRB:u=AsinKr RB: u=0 für r0 wegen u/r endlich C = 0


I rr0d2udr2+2μ2(E)u=0 , k=2μE2=[4,31015m]1

Lösung u=Bekr+Dekr=Bek(rr0) RB: u = A \sin Kr</math> RB: u0 für r D=0


Stetiger Anlschluß von u und \frac{du}{dr} bei r=r0 :

AsinKr0=BKAcosKr0=B(k)KctgKr0=k

Damit werden die beiden Parameter (V0,r0 ) des Kastenpotentials miteinander verknüpft, z.B. mögliche Wertepaare r0=1,4×1015m,2×1015mV0=50MeV,30MeV

miniatur

Da für I=12+12 nur I = 1 existiert, sind die Kernkräfte spinabhängig, wobei nur das Triplettpotential bindend ist. Erklärt auch die Nichtexistenz von p2 und n2 durch das Pauli-Prinzip.


Ailsatz V =V1( r) + v 2 (r)0(s--l+o-s-+2 ) (-5-+1 --+ 1 3 05 2 ) :::} 7[S(S+1) 4 Triplett VT = VI (r) + 4 0 V2 (r) S = 1 1 Singulett Vs = VI (r) - 4 3 0 V2 (r) S = 0


Grobe Abschätzung für Singulett-Potential: Falls V_s gerade nicht mehr bindender, sinKr01 senkrecht auf Potentialwand, so daß man keine abnehmende Exponentialfunktion im Außenraum anfügen kann.

Kr0π2 bedeutet in Zahlenwerten |V0|r02100,V0[MeV],r0[1015m]


Die Existenz des (sehr kleinen) Quadrupolmoments bedeutet einen sehr kleinen Beitrag einer nichtzentralen Kraft, die eine 3D1-Zumischung ermöglicht.


b) n-p Streuung

Wirkungsquerschnitt σ[m2]

Datei:8.3.Wirkungsquerschnitt.png

σ als "Trefferfläche" , z.B. σ(geom.)=πR210291028m2(1028m2=1b). Festkörpertarget N1022 Kerne/cm³, σ1028m3, Targetlänge z.B. 1=102mσNl103102 , d.h. "dünnes" Target mit I=I0(lσNl).


Kinematik: mpmn, "Billardproblem"

Datei:8.4.Zweikoerperproblem.png

21 Körperproblem: Stoß zweier Teilchen gleicher Masse im CM-System ist äquivalent dem Stoß eines Teilchens mit reduzierter Masse μ=m/2 und E=ELAB/2 an einem festen Streuzentrum bei r=rprp0.

Quantenmechanische Formulierung des Streuproblems

Datei:8.5.Streuproblem.Quantenemechanische.Formulierung.png


differentieller Wirkungsquerschnitt{{#set:Fachbegriff=differentieller Wirkungsquerschnitt|Index=differentieller Wirkungsquerschnitt}} dσ/dn in Raumwinkel dΩ:

dσdn= Fluss der gestreuten Teilchen in Raumwinkel dΩ(Detektor)Fluss der einlaufenden Teilchen pro Einheitsflaeche
Fluß der einfallenden Teilchen
|eikz|2v, |eikz|2 1 Teilchen pro Raumeinheit
Fluß der gestreuten Teilchen in dΩ:|eikrf(θ)|2r2v
dσdΩ=|f(θ)|2 Quadrat der Streuamplitude f(θ)


Speziell für isotrope Streuung (f(\sigma) = const.) ist dann der (Gesamt)-Wirkungsquerschnitt σ=4π|f|2 .


Berechnung des Wirkungsquerschnitts:

Zunächst Entwicklung der einlaufenden ebenen Welle nach Kugelwellen.

eikz=eikrcosθ=1il(2l+1)jl(kr)P1(cosθ)

jl(kr) sphärische Besselfunktionen


Sinn: Bei niedrigen Energien (En10MeV) kann wegen der kurzen Reichweite der Kernkräfte nur der 1=O-Anteil (S-Wellen) gestreut werden. Teilchen mit 10 kommen bei diesen Energien nicht nahe genug heran. Quantitativ:

Datei:8.6.SWellenAnteil.png

Wegen k=2μE2=0,1512ELAB[MeV]1015ml und r0=1015m ist für ELABMeV die Bedingung kr01 erfüllt.

Der S-Wellenanteil der einlaufenden ebenen Welle lautet mit j0(kr):

(S-Wellenanteil) =sinkrkreikreikr2ikr eikr auslaufende Kugelwelle eikr einlaufende Kugelwelle


Nach dem "Durchlaufen" des Zentralpotentials V=V(r) bleiben der S-Wellencharakter, der Wellenvektor k und die Teilchenzahl erhalten. Deshalb kann es nur eine Phasenänderung in der auslaufenden Kugelwelle geben.


S-Wellenanteil nach Durchlaufen des Streupotentials:

ei(kr+2δ0)eikr2ikreiδ0sin(kr+δ0)kr


Die Differenz des S-Wellenanteils vor und. nach der Streuung charakterisiert die qestreuten Teilchen, also die gestreute auslaufende Kugelwelle eikrrf(θ):

Failed to parse (syntax error): {\displaystyle \frac{e^{i(kr+2\delta_0}}-e^{ikr}}{2ikr}\equiv \frac{e^{i(kr+\delta_0})}{r} \frac{\sin \delta_0}{k}}

Damit gilt für den diff. Wirkungsquerschnitt in Abhängigkeit von der Streuphase δ0

dσdΩ=|f(θ)|2=sin2δ0k2

Berechnung der Streuphase mit einem Kastenpotential (V0,r0) über die Schrödingergleichung analog zum Deuteronproblem, jedoch E>O.

Innenbereich I Außenbereich 11 2 [-~2 - d2 + V ] U = E " u [_h ~ + 0] U = E • u 2p. dr2 0 2p. dr2 u = Al • sinKr u = A2 " sin(kr+oo ) K = ,; 2fL(E-VQ)' (siehe eiOo"sin(~~+Og) und W ~ u ofi2 r k =j~i 112 Stetige Anpassung für u und du/dr bei r = r o ergibt Al sin Kro = A2 " sin (kro+o o ) = A2k(ro-a) K • Al cos Kro = k • A2 " cos (kro+oo ) = A2k k " K .

Im niederenergetischen Bereich mit kK kann man die Sinusfunktion im Außenbereich durch eine Gerade ersetzen

uA2(kr+δ0)=A2k(ra) mit δ0=ka.


Die sogenannte Streulänge a ist der Schnittpunkt dieser Geraden mit der r-Achse. Je nachdem (V0,r0) für E0 bindend oder nichtbindend ist, ist a positiv oder negativ. Sehr große Werte für die Streulänge erhält man, wenn das Potential gerade noch (VT) oder gerade nicht mehr bindend (Vs) ist.


Datei:8.7.Wirkungsquerschnitt.Kasten.QM.png

Wirkungsquerschnitt σ=4π|f(θ)|2=4πsin2δ0k2=4πa2 unabhängig von E für den Bereich kK mit δ0=ka und a=r01KtgKr0. In der Streu1änge a sind wieder die beiden Parameter des Kastenpotentials (V0,r0) miteinander verknüpft.


Experimentell:

Datei:8.8.Wirkungsquerschnitt.Experimentell.png

Grobe Abschätzung aus Deuteronproblem ergibt für das Triplettpotential aT=5,7×1015m und damit σT4,5×1028m2 . Damit erhält man aus σ20×1028m2 für σs68×1028m2 und |as|=23×1028m2. Das negative Vorzeichen as<0 folgt aus Messungen der kohärenten Streuung am Para-Wasserstoff-Molekül.


Während der Bereich bis ca. 104 eV vom Sinulett-Potential beherrscht wird, tritt für den Bereich 104107 eV immer mehr das Triplett-Potential in den Vordergrund. Ab 107 eV müssen verstärkt höhere Bahndrehimpulsanteile berücksichtigt werden.


Bei einer feldtheoretischen Behandlung in Analogie zur Quantenelektrodynamik versucht man die Kernkräfte durch Mesonen-Austauschprozesse zu beschreiben. Dabei wird der "langreichweitige" Teil durch Ein-Pion-Austauschprozesse (Yukawa-Ansatz 1935) und der Bereich mittlerer Reichweite durch Zwei-Pion-Austauschprozesse beschrieben. Der "kurzreichweitige" Teil mit einem stark abstoßenden Anteil (hard core) muß durch den Austausch mehrerer Mesonen behandelt werden. Dabei spielen nicht nur die ω-Mesonen, sondern schwere Mesonen (z.B. das ω-Meson mit mc2=783MeV) wegen ihrer kleinen Compton-Wellenlänge eine besondere Rolle. Da Nukleonen und Mesonen ihrerseits aus Quarks zusammengesetzt sind, die von Gluonen zusammengehalten werden, muß eine genauere Feldtheorie der Kernkräfte auf diesen Teilchen aufbauen.