Tröpfchenmodell, Weizsäckersche Massenformel

From testwiki
Jump to navigation Jump to search

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::4Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=4|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__


Die nahezu konstante Nukleonendichte{{#set:Fachbegriff=Nukleonendichte|Index=Nukleonendichte}} und der nahezu konstante B/A-Wert ("Kondensationswärme{{#set:Fachbegriff=Kondensationswärme|Index=Kondensationswärme}}") legt die Analogie zum Flüssigkeitstropfen nahe. Massenformel[1]


Bindungsenergie{{#set:Fachbegriff=Bindungsenergie|Index=Bindungsenergie}} setzt sich aus 5 Anteilen zusammen:

1. Volumenenergie{{#set
Fachbegriff=Volumenenergie|Index=Volumenenergie}}: Volumenenergie ("Kondensationswärme" ) vermindert um
2. Oberflächenenergie{{#set
Fachbegriff=Oberflächenenergie|Index=Oberflächenenergie}}: ~ Anzahl der Nukleonen an der

Oberfläche, die weniger stark gebunden sind.

3. Coulombenergie{{#set
Fachbegriff=Coulombenergie|Index=Coulombenergie}}: einer homogen geladenen Kugel

Durch die Coulombenergie würden für Isobare{{#set:Fachbegriff=Isobare|Index=Isobare}} (A = const) zu stark Kerne mit vielen Neutronen bevorzugt. In Wirklichkeit ist jedoch .

Genauer: Nuklidkarte miniatur|zentriert|hochkant=3|Nuklidkarte

Als Gegengewicht genüber dem Coulombterm deshalb:

4. Asymmetrie-Energie{{#set
Fachbegriff=Asymmetrie-Energie|Index=Asymmetrie-Energie}}:

Außerdem gilt folgende Regel, wenn man die Kerne bezüglich gerader oder ungerader Protonen- oder Neutronenzahl ordnet:

5. Parität{{#set
Fachbegriff=Parität|Index=Parität}}: Deshalb

mit


Anpassung der Formel an viele Massenwerte gibt einen optimalen Wertesatz für die 5 Parameter und mit [2]). Genauigkeit .

Folgerungen aus der Weizsäckerschen Massenformel

I. Isobarenregeln

Für Isobare{{#set:Fachbegriff=Isobare|Index=Isobare}} (A = const.) ist die Massenformel quadratisch in Z, deshalb bekommt man für A = ungerade, d.h. für (u, g)- und (g, u)-Kerne eine Parabel und für A = gerade, d.h. für (g, g)- und (u, u)-Kerne zwei Parabeln, die durch den Abstand der Paarungsenergie{{#set:Fachbegriff=Paarungsenergie|Index=Paarungsenergie}} getrennt sind.

miniatur|hochkant=3|zentriert|Isobarenparabeln

Trägt man die Massenwerte in die Nuklidkarte{{#set:Fachbegriff=Nuklidkarte|Index=Nuklidkarte}} auf der N-Z-Ebene nach oben auf, dann sind die Isobarenparabeln Schnitte längs der Linie A = Z + N = const. Die stabilen Kerne liegen in der "Talsohle des Massetals".


Umwandlung durch Beta-Zerfall:

Konkurrenzprozeß: Kerneinfang{{#set:Fachbegriff=Kerneinfang|Index=Kerneinfang}}

II. Kernspaltung und Fusion

Allgemein für leichtere Kerne Energiegewinn durch Fusion{{#set:Fachbegriff=Fusion|Index=Fusion}}, für schwerere Kerne durch Spaltung{{#set:Fachbegriff=Spaltung|Index=Spaltung}} möglich. Spontane Fusion durch Coulombabstoßung, spontane Spaltung durch Spaltschwelle{{#set:Fachbegriff=Spaltschwelle|Index=Spaltschwelle}} behindert.

Spaltung

miniatur|hochkant=3|zentriert|Stabilitätsbetrachtung bezüglich spontaner Spaltung

Coulombenergie
nimmt ab.
Oberflächenenergie
nimmt zu.

Stabilitätsbedingung gegenüber spontaner Spaltung: größere Zunahme der Oberflächenenergie als Abnahme der Coulombenergie.

Rechnung:

Für Spaltschwelle:


miniatur|hochkant=3|zentriert|Spaltschwelle


Neutroneninduzierte Spaltung bei Uran durch freiwerdende Bindungsenergie{{#set:Fachbegriff=Bindungsenergie|Index=Bindungsenergie}} bei Neutroneneinfang{{#set:Fachbegriff=Neutroneneinfang|Index=Neutroneneinfang}}. Für thermische Neutronen{{#set:Fachbegriff=thermische Neutronen|Index=thermische Neutronen}} ist diese Bindungsenergie

bei

bei

Die fehlende Paarungsenergie{{#set:Fachbegriff=Paarungsenergie|Index=Paarungsenergie}} bei bedingt die niedrigere Bindungsenergie, so daß bei der Einbau thermischer Neutronen nicht zur Überwindung der Spaltschwelle ausreicht.


Allgemein Spaltprozeß:


Spaltbruchstücke X und Y instabil wegen Neutronenüberschuß, -Zerfall, z.B.

miniatur|hochkant=3|zentriert|instabile Spaltbruchstücke

Grobe Abschätzung für -Verbrauch:

Fusion

Bei sehr leichten Kernen Durchtunneln des Coulombwalls{{#set:Fachbegriff=Coulombwalls|Index=Coulombwalls}} oberhalb von möglich (z.B. Sonneninnere mit und ).

Kontrollierte Fusion mit Deuterium und Trithium

Einzelnachweise

  1. Weizsäcker Z. Phys. 96, 431 (1935)
  2. (Seeger Nucl. Phys. 25, 1(1961)

Weitere Informationen

(gehört nicht zum Skript) Wikipedia-Artikel miniatur miniatur miniatur