Weitere Eigenschaften der Dirac-Gleichung
| 65px|Kein GFDL | Der Artikel Weitere Eigenschaften der Dirac-Gleichung basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 6) der Quantenmechanikvorlesung von Brandes. | 
|}}
{{#set:Urheber=Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=6}} Kategorie:Quantenmechanik __SHOWFACTBOX__
Wir starten von
mit der WahrscheinlichkeitsdichteWahrscheinlichkeitsdichte{{#set:Fachbegriff=Wahrscheinlichkeitsdichte|Index=Wahrscheinlichkeitsdichte}} ρ und der WahrscheinlichkeitsstromdichteWahrscheinlichkeitsstromdichte{{#set:Fachbegriff=Wahrscheinlichkeitsstromdichte|Index=Wahrscheinlichkeitsstromdichte}} jk.
Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors zusammen.
- Lorentz-Invarianz
 
Relativistische Notation:
kontravarianter VierervektorVierervektor{{#set:Fachbegriff=Vierervektor|Index=Vierervektor}} mit Index oben
kovarianter Vierervektor mit Index unten (kow steht below)
- Das relativistische Skalarprodukt
bleibt invariant unter Lorentz-Transformation.
- Metrischer Tensor
- in der SRT der selbe überall
- Hoch und Runterziehen
- Lorentz-Transformation wie in (1.11) (Bewegung in x-Richtung)
Für Vierervektoren, die sich wie der Koordinatenvektor  bei Lorentz-Transformation transformieren(1.53), ist Lorentz-invariant.
GradientVierergradient{{#set:Fachbegriff=Vierergradient|Index=Vierergradient}} (etc)
Die Dirac-Gleichung folgt aus
- Dirac-Gleichung{{#set:Fachbegriff=Dirac-Gleichung|Index=Dirac-Gleichung}} - (1.56) 
- Relativistische Invarianz: Gleiche Form der Dirac-Gleichun in zwei System S,S‘ (die sich gleichförmig gegeneinander bewegen) aber nicht Invarianz der Dgl. gegenüber Lorentz-Transformationen
Es muss also gelten
(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)
Lorentz-Transformation
Ableitung
Selbe Ableitung der Dirac-Gleichung
Also muss gelten
Multiplikation von S-1 von links
Wenn (1.58) erfüllt ist, folgt relativistische Invarianz.
Für beliebige ß durch Exponenten (wichtiger Trick, steckt natürlich tiefere Mathematik dahinter: Liegruppen, Lie-Algebra…)
Berechnung (AUFGABE) ergibt
- Kontinuitätsgleichung, Viererstromdichte (1.37)
- (ViererstromdichteViererstromdichte{{#set:Fachbegriff=Viererstromdichte|Index=Viererstromdichte}}) - (1.62) 
- (KontinuitätsgleichungKontinuitätsgleichung{{#set:Fachbegriff=Kontinuitätsgleichung|Index=Kontinuitätsgleichung}}) - (1.63) 
Lorentz-Invarianz von :  zeige  wobei
- (1.65) - {{{3}}} 
 Lorentz-Invarianz von