Mikroskopisches Modell der Polarisierbarkeit

From testwiki
Revision as of 20:57, 12 September 2010 by *>SchuBot (Pfeile einfügen, replaced: -> → → (2))
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=5}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Ziel: Berechnung der Materialkonstanten

5.5 Mikroskopisches Modell der Polarisierbarkeit

Ziel: Berechnung der Materialkonstanten

χe

aus einfachen mikroskopischen Modellen Methode: Berechne die induzierte mittlere elektrische Dipoldichte

P¯

für ein gegebenes Feld

E¯

.

Nebenbemerkung: Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation

Klassisches Atommodell:

homogen geladene Kugel mit Radius R und Elektronenladung

Qe=Ze<0

Außerdem ein punktförmiger Kern mit

Qk=+Ze>0

am Ort

r¯k

Merke:

Auch diese Berechnungen geschehen, wie im NOTFALL grundsätzlich zu empfehlen, durch Lösen integraler Darstellungen der Maxwellgleichungen

Ziel: Berechnung des elektrischen Feldes

E¯el.(r¯)

der Elektronen nach außen:

Gauß- Gesetz


Vd3rD¯(r¯,t)=Vd3rρ(r¯,t)=Q=Vdf¯D¯(r¯,t)

Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen


Wichtig ! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber ! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig , aber hier homogen verteilt !→ einfache Integration.

Auswertung liefert

ε0V(r´)df¯E¯(r¯,t)=V(r´)Q43πR3=r´3R3Q4r´2πε0|E¯(r¯,t)|=r´3R3Q|E¯(r¯,t)|=r´4πε0R3Q

Natürlich nur für

r´R

setzt man

r¯´=r¯r¯e

, wobei

r¯e

das Zentrum der elektrischen Ladung angibt,

so gewinnt man das rotationssymmetrische Ergebnis

E¯(r¯,t)=r¯r¯e4πε0R3Qe

und die Kraft auf den Kern folgt gemäß:

F¯K=QKE¯(r¯´k,t)=r¯kr¯e4πε0R3QeQk=Z2e24πε0R3(r¯kr¯e)

wegen actio = reactio folgt dann für die Kraft auf die Elektronen:

F¯e=F¯K

Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld

E¯a

):

mKr¯¨k=F¯K+QKE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+QKE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+ZeE¯a(r¯´k,t)Zmer¯¨e=F¯K+QeE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+QeE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)ZeE¯a(r¯´k,t)

Also folgt für die Relativbewegung:

r¯=r¯kr¯e

als relativer Abstand

r¯¨=r¯¨kr¯¨e=Z2e24πε0R3mK(r¯kr¯e)+ZemKE¯a(r¯´k,t)Ze24πε0R3me(r¯kr¯e)+emeE¯a(r¯k,t)=Z2e24πε0R3(1mK+1Zme)(r¯kr¯e)+Ze(1mK+1Zme)E¯a(r¯k,t)(1mK+1Zme)1Zme(r¯kr¯e)=r¯r¯¨=Ze24πε0meR3r¯+emeE¯a(r¯k,t)Ze24πε0meR3:=ω02r¯¨+ω02r¯=emeE¯a(r¯k,t)

Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial ! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können !

Jedenfalls im stationären Zustand gilt:

r¯=eω02meE¯a(r¯k,t)

( Dynamik mit Dämpfung)

χe(ω)

Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:

p¯=Zer¯=Ze2ω02meE¯a(r¯k,t)=ε0αE¯aα:=Ze2ω02ε0meZe24πε0meR3:=ω02α:=Ze2ω02ε0me=4πR3=3VAtom

Die Polarisierbarkeit des Atoms, ein mikroskopischer Parameter. Entsprechend:

p¯=Vd3r´ρe(r´)r¯´+ZeVd3r´δ(r¯r¯´)ZeVd3r´δ(r¯r¯´)=Zer¯Vd3r´ρe(r´)r¯´=Ze4π3R3Vd3r´r¯´Vd3r´r¯´=0

wegen Symmetrie

p¯=Zer¯

makroskopisch gemittelte Energiedichte:

P¯=np¯=ε0nαE¯a

mit der mittleren Atomdichte n

Selbstkonsistente Berechnung des Lokalfeldes Ea:

Wichtig: Berücksichtigung der Felder, die durch andere elektrische Dipole erzeugt werden:

Gedankenexperiment


Feld einer homogenen polarisierten Kugel:

Ansatz: homogen geladene Kugel:

E¯0(r¯)=Q4πε0{r¯a3rar¯r3ra

Also:


Φ0(r¯)=Q4πε0{cr¯22a3ra1rra

Bestimmung der Integrationskonstanten:

limε>0Φ0(aε)=Φ0(a+ε)c=32a

die homogen polarisierte Kugel

Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.

Dann: ro → 0


Bilde:

Φ0(r¯)=Φ0(r¯12r¯0)Φ0(r¯+12r¯0)r¯0Φ0(r¯)Φ0(r¯)=E¯0Φ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=14πε0{p¯r¯a3rap¯r¯r3rap¯:=Qr¯0

Das Dipolmoment der herausgeschnittenen Kugel.

Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet. Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:

P¯=p¯43a3πΦ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=1ε0{P¯r¯3raP¯r¯a3r3ra

Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.

E¯Kugel=Φ=1ε0P¯3ra

für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).

Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:


das äußere Feld wird erzeugt durch Atome, die sich außerhalb der Hohlkugel befinden. Das innere Feld durch Atome im Inneren der Hohlkugel. Gezeichnet: Lokalfeld einer polarisierten dielektrischen Kugel im homogenen elektrischen Feld


Das Lokalfeld im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:

E¯a(r¯)=E¯E¯KUgel
E¯a(r¯):LokalfeldE¯:makroskopischE¯a(r¯)=E¯+13ε0P¯

Letztes wurde von Lorentz eingeführt als "Korrekturfeld"

weil

E¯a+E¯Kugel=E¯

sein muss

Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel ( wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld !

Zusammenhang zwischen P und makroskopischem Feld E:

P¯=ε0nαE¯a=ε0nα(E¯+13ε0P¯)P¯=ε0χeE¯χe=nα113nαnα=χe1+13χe=ε11+ε13=3ε1ε+2

Formel von Clausius - Masotti für polarisierte Kugel