Grenzbedingungen für Felder

From testwiki
Revision as of 00:34, 29 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|5|4}}</noinclude> _ Frage ist: Wie verhalten sich <math>\bar{B},\bar{H},\bar{D},\bar{E}</math> an Grenzflächen, die ve…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=4}} Kategorie:Elektrodynamik __SHOWFACTBOX__


_ Frage ist: Wie verhalten sich B¯,H¯,D¯,E¯ an Grenzflächen, die verschiedene elektrische und magnetische Materialien ( Vakuum/ Materie) trennen ?

Integration der Maxwell- Gleichungen über ein Volumen V:


Vd3rD¯(r¯,t)=Vd3rρ(r¯,t)=Q=Vdf¯D¯(r¯,t)

Vd3r×H(r¯,t)=Vd3r(j¯+tD¯)

Bildlich:

Normalkomponenten: Betrachte einen Zylinder, der senkrecht auf einer Grenzfläche steht. Nun nimmt man die Maxwellgleichungen in integraler Schreibweise an und läßt den Zylinder unter Berücksichtigung von Integrationssätzen gegen Null- Höhe gehen:

also: Für die Normalkomponenten: h -> 0

Während also die Normalkomponente des B- Feldes an der Grenzfläche stetig ist, springt die Normalkomponente der dielektrischen Verschiebung um die Ladung, die an der Grenzfläche sitzt: Unter der Annahme, dass die Grenzfläche die freie Flächenladungsdichte σ trägt:

ρ(r¯,t)=σ(x,y,t)δ(z)e¯zn¯limh>0Vd3rρ(r¯,t)=Q=Fdfσ(x,y,t)limh>0Vdf¯D¯(r¯,t)=Fdf¯(D¯(1)D¯(2))=Fdfn¯(D¯(1)D¯(2))=Fdfσ(x,y,t)

limh>0Vdf¯B¯=Fdf¯(B¯(1)B¯(2))=Fdfn¯(B¯(1)B¯(2))=0

Somit müssen die Integranden übereinstimmen:

n¯(B¯(1)B¯(2))=0

n¯(D¯(1)D¯(2))=σ(x,y,t)

Tangentialkomponenten

Anwendung des verallgemeinerten Gaußschen Satz:

1)×E¯+1ctB¯=0

4)×H(r¯,t)1ctD¯=4πcj¯

Vd3r×E¯=Vd3rtB¯

Vd3r×H(r¯,t)=Vd3r(j¯+tD¯)

Auch hier: h-> 0

Vd3r×E¯=Vdf¯×E¯=Vd3rtB¯Vd3r×H(r¯,t)=Vdf¯×H(r¯,t)=Vd3r(j¯+tD¯)limh>0Vdf¯×E¯=Vdfn¯×(E¯(1)E¯(2))limh>0Vdf¯×H(r¯,t)=Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))

In beiden Fällen die Tangentialkomponenten der Felder ! senkrecht auf Flächenvektor und Feld

Wegen:

limh>0Vdf¯×E¯=Vdfn¯×(E¯(1)E¯(2))=limh>0Vd3rtB¯limh>0Vdf¯×H(r¯,t)=Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))=limh>0Vd3r(j¯+tD¯)

Annahme: Grenzfläche trägt (freie) Flächenstromdichte g¯j¯(r¯,t)=g¯(x,y,t)δ(z)

wie es bei metallen der Fall ist !, dann:

limh>0Vd3rj¯=Fdfg¯

Weiter:

limh>0Vd3rtB¯limh>0Vd3rtD¯

können für Volumenintegrale mit verschwindendem Volumen nur einen Beitrag liefern, wenn tB¯,tD¯ Unendlichkeitsstellen besitzen.

Annahme:

B¯,D¯ und tB¯,tD¯ sind beschränkt:

limh>0Vd3rtB¯=0limh>0Vd3rtD¯=0limh>0Vd3r(j¯+tD¯)=Fdfg¯(x,y,t)Vdfn¯×(E¯(1)E¯(2))=0Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))=Fdfg¯(x,y,t)

Somit haben wir die Grenzbedingungen für die Tangentialkomponenten:

n¯×(E¯(1)E¯(2))=0n¯×(H(r¯,t)(1)H(r¯,t)(2))=g¯(x,y,t)

Das heißt:

Die Tangentialkomponente des elektrischen Feldes E ist am Grenzübergang stetig Die Tangentialkomponente des magnetischen Feldes H springt am Grenzübergang um die Flächenstromdichte !

Bildlich: Sitzen Ladungen an einer Grenzfläche, so ist die Normalkomponente von D ( wichtig: Polarisationseffekt -> Polarisation muss irgendwo mit auftauchen) nicht stetig ! Fließen flächenartige Ströme entlang einer Grenzfläche, so ist die Tangentialkomponente von H nicht stetig !

Zusammenfassung:

δE¯:=(E¯(1)E¯(2))

Maxwellgleichung Grenzbedingung

1)×E¯=t×A¯(r¯,t)=tB¯n¯×δE¯=02)B¯=0n¯δB¯=0

3)D¯(r¯,t)=ρ(r¯,t)n¯δD¯(r¯,t)=σ

4)×H(r¯,t)=j¯+tD¯n¯×δH(r¯,t)=g¯

Also: die Tangenzialkomponente von E ist stetig Die Normalkomponente von D springt um die Flächenladungsdichte ( Flächendivergenz) Die Tangentialkomponente von H springt ( Flächenrotation) um die Flächenstromdichte Die Normalkomponente von B ist stetig.

Beispiele:

  1. Grenzfläche zwischen 2 dielektrischen Materialien mit

ε(1)<ε(2)σ=0


Zuerst zeichne man sich ein derartiges Diagramm hin !

E¯t(1)=E¯t(2)D¯n(1)=D¯n(2)

letzteres wegen der verschwindenden Flächenladungsdichte !

E¯t(1)=E¯t(2)D¯n(1)=D¯n(2)ε1E¯n(1)=ε2E¯n(2)E¯n(2)=ε1ε2E¯n(1)tanα1=E¯t(1)E¯n(1)=ε1ε2E¯t(2)E¯n(2)=ε1ε2tanα2

Dies ist das Brechungsgesetz für die Feldlinien

Achtung ! Das Snelliussche Brechungsgesetz müsste man sich für den Verlauf des Energiestroms berechnen

  1. Grenzfläche zwischen Vakuum ( Luft) und magnetischem Material

2.1 Sei speziell B¯ Grenzfläche ( z.B. zwischen den Polschuhen eines Ringmagneten mit Luft dazwischen / Material genauso !)): In diesem Fall (keine Oberflächenströme) ist B¯ grundsätzlich stetig ! B ist eh immer grundsätzlich stetig ! Wegen der Divergenzgleichung wird B immer ( wie D´) für Normalkomponenten herangezogen.

  1. Paramagnetisch:

1μ0B¯=M¯+H¯M¯H¯


  1. Paramagnetisch:

1μ0B¯=M¯+H¯M¯H¯


2.2 Sei speziell B¯|| Grenzfläche ( z.B. lange Spule mit Luft dazwischen / Material genauso !)): Wir müssen nun Tangentialkomponenten untersuchen. Dazu nimmt man die Rotationsgleichungen ( E und H):

In diesem Fall ist H¯ stetig für g¯=0 ( kein Oberflächenstrom)