Multipolstrahlung

From testwiki
Revision as of 00:28, 29 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „ <noinclude>{{Scripthinweis|Elektrodynamik|4|3}}</noinclude> <u>'''Ziel:'''</u> <u>'''Die '''</u>retardierten Potenziale sollen für räumlich lokalisierte und …“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search



{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=3}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Ziel:

Die retardierten Potenziale sollen für räumlich lokalisierte und zeitabhängige Ladungs- und Stromverteilungen analog zu den statischen Multipolentwicklungen für große Abstände von der Quelle, also r>>r´ entwickelt werden.

Voraussetzung: Lorentz- Eichung

Φ˙(r¯,t)+c2A¯(r¯,t)=0

Somit kann aus A¯(r¯,t) dann Φ(r¯,t) und somit auch E¯(r¯,t)

B¯(r¯,t) berechnet werden.

  1. Näherung:

r>>a ( Ausdehnung der Quelle)

Mit

1|r¯r¯´|=1r+1r3(r¯r¯´)+...

folgt:

A¯(r¯,t)μ´04πrd3r´j¯(r¯´,t|r¯r¯´|c)+μ´04πr3d3r´j¯(r¯´,t|r¯r¯´|c)(r¯r¯´)

Das heißt, es werden nur Terme bis zur zweiten Ordnung berücksichtigt !

  1. Näherung

t|r¯r¯´|ctrc+r¯r¯´cr+....trc:=τ

Diese Näherung sollte gut sein, falls τ>>r¯r¯´crac

Also: Die Retardierung zum Aufpunkt r sollte wesentlich größer sein als die relative Retardierung der einzelnen Punkte der Quelle untereinander !

a~ Ausdehnung der Quelle

τ ist etwa die charakteristisch zeit für die Änderung von j¯

Beispielsweise: harmonische Erregung:

j¯~eiωtωτ=!=2πτ=2πω=2πck=λca<<λ

Die Ausdehnung der Quelle müsste also deutlich kleiner sein als die Wellenlänge des abgestrahlten Lichtes !

Dann gilt:

j¯(r¯´,t|r¯r¯´|c)j¯(r¯´,trc)+r¯r¯´crj¯(r¯´,trc)(trc)=j¯(r¯´,τ)+r¯r¯´crj¯(r¯´,τ)τ

Also folgt für das Vektorpotenzial:


Die niedrigste or5dnung verschwindet nicht, da im Gegensatz zu Paragraph § 2.4 die Divergenz des Stromes nicht verschwindet:

j¯0

Mit:

r´(xk´j¯(r¯´,τ))=xk´(r´j¯(r¯´,τ))+jk

mit der Kontinuitäätsgleichung:

r´j¯(r¯´,τ)=ρ˙(r¯´,τ)r´(xk´j¯(r¯´,τ))=jkxk´ρ˙(r¯´,τ)

und wegen

d3r´r´(xk´j¯(r¯´,τ))=0 (Gauß)

folgt dann:

d3r´r´(xk´j¯(r¯´,τ))=0=d3r´(jkxk´ρ˙(r¯´,τ))d3r´j¯(r¯´,τ)=d3r´r¯´ρ˙(r¯´,τ)=:p¯˙(τ)

mit dem elektrischen Dipolmoment:

p¯(τ)=d3r´r¯´ρ(r¯´,τ)

Somit für die erste Ordnung:

A¯(1)(r¯,t)μ´04πrp¯˙(trc)

Elektrische Dipolstrahlung

Interpretation: Hertzscher Dipol ( H hertz, 1857-1894)

p¯(t)=p¯(t0)eiωt

p¯


A¯(1)(r¯,t)iωμ´04πp¯(t0)eiω(trc)r=iωμ´04πp¯(t0)ei(krωt)rk:=ωc

Die Kugelwelle !

Bestimmung des skalaren Potenzials mit Hilfe Lorentzeichung:

Φ˙(r¯,t)+c2A¯(r¯,t)=0tΦ(r¯,t)=1ε0μ0A¯(r¯,t)=14πε0[1rp¯˙(trc)]Φ(r¯,t)=14πε0[1rp¯(trc)]+Φstat.(r¯)Φstat.(r¯)=0(obda)Φ(r¯,t)=14πε0[1rp¯(trc)]=14πε0[1cr2r¯p¯˙(trc)+1r3r¯p¯(trc)]1cr2r¯p¯˙(trc)~1r1r3r¯p¯(trc)~1r2

Grenzfälle:

1) Fernzone / Wellenzone:

r>>λ>>(a)kr>>1ωcr>>11cp¯˙~ωcp¯>>p¯r

In der Fernzone ist die Retardierung sehr wichtig !!

Es gilt die Näherung

Φ(r¯,t)fern14πε01cr2r¯p¯˙(trc)

2) Nahzone: ( quasistatischer Bereich):

λ>>r>>>(a)kr<<1ωcr<<111cp¯˙~ωcp¯<<p¯r

Also:

Φ(r¯,t)14πε01r3r¯p¯(trc)

Dies kann man noch entwickeln nach

p¯(t) . dadurch entstehen Terme:

1cr2r¯p¯˙(t)1r3rcr¯p¯˙(t)

Diese kompensieren sich gegenseitig. Also: Die Retardierung kompensiert den p¯˙(t) - Term.

Wir schreiben:

Φ(r¯,t)14πε01r3r¯p¯(t)

in guter Näherung ein instantanes Dipolpontenzial ( in der Nahzone ist die Retardierung zu vernachlässigen).

Berechnung der Felder in Fernfeldnäherung


Φ(r¯,t)fern14πε01cr2r¯p¯˙(trc)

B¯(r¯,t)=×A¯(r¯,t)μ´04π×1rp¯˙(trc)=μ´04πc1r2[p¯¨(trc)×r¯]+O(1r2)E¯(r¯,t)=Φ(r¯,t)A¯˙(r¯,t)=14πε0c21r3[p¯¨(trc)×r¯]×r¯+O(1r2)

Es gilt:

B¯(r¯,t)×r¯r=μ04πc1r3[p¯¨(trc)×r¯]×r¯=1cE¯(r¯,t)μ04πc=μ0ε04πcε0=14πc3ε0

F Fazit:

r¯,E¯(r¯,t),B¯(r¯,t)

bilden für Dipolstrahlung ein Rechtssystem, r, B und E stehen senkrecht aufeinander ! Allerdings als Ausbreitung einer freien Kugelwelle nur in der Fernzone !!

Nebenbemerkung: In der Nahzone gilt immer noch wegen B¯(r¯,t)=0 , dass r und B senkrecht stehen.

Aber: das elektrische Feld hat neben der senkrechten Komponente , die zu r senkrecht steht ( transversale Komponente) noch longitudinale Anteile ( E- parallel, die zu r parallel sind).

Poynting- Vektor ( Energiestromdichte)

S¯=E¯×H¯=1μ0B¯×E¯=cμ0rB¯×(B¯×r¯)=cμ0r[(B¯r¯)B¯B2r¯](B¯r¯)=0S¯=cμ0rB2r¯

B¯(r¯,t)=×A¯(r¯,t)μ´04π×1rp¯˙(trc)=μ´04πc1r2[p¯¨(trc)×r¯]+O(1r2)


Also:

entspricht

l=1,m=0


Abstrahl- Charakteristik des Hertzschen Dipols:

p¯(t)=p¯0eiωt|p¯¨|2=p¯02ω4

Stark Richtungs- und stark frequenzabhängig !! höhere Frequenzen werden mit 4. Potenz besser abgestrahlt ! Nebenbemerkung: Die gemachte Rechnung ist eine Näherung für eine lineare Antenne

Magnetische Dipol- und Quadrupolstrahlung

Die niedrigste Ordnung der Mutipolentwicklung von A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´| (mit der Coulomb- Eichung A¯(r¯)=0 )

mit den Randbedingungen A¯(r¯)0 für r-> unendlich verschwindet für eine quellenfreie Stromdichte:

Taylorentwicklung nach 1|r¯r¯´| von analog zum elektrischen Fall: Die Stromverteilung j¯(r¯´) sei stationär für r>>r´

1|r¯r¯´|=1r+1r3(r¯r¯´)+...

A¯(r¯)=μ04πrR3d3r´j¯(r¯´)+μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)+...

Monopol- Term

Mit

r´[xk´j¯(r¯´)]=xk´(r´j¯(r¯´))+j¯(r¯´)(r´xk´)

Im stationären Fall folgt aus der Kontinuitätsgleichung:

r´j¯(r¯´)=0

r´[xk´j¯(r¯´)]=j¯(r¯´)(r´xk´)=jlδkl=jk

Mit r´[xk´j¯(r¯´)]=jk folgt dann:

d3r´jk(r¯´)=d3r´r´[xk´j¯(r¯´)]=Sdf¯[xk´j¯(r¯´)]=0

Somit verschwindet der Monopolterm in der Theorie.

Also: Falls

j¯(r¯´,τ) quellenfrei und damit divergenzfrei, so verschwindet die niedrigste Ordnung der Entwicklung von A: Mit Hilfe der Kontinuitätsgleichung:

r´j¯(r¯´,τ)=τρ(r¯´,τ)=0p¯˙(τ)=d3r´r¯´ρ˙=0A(1)=μ04πrp¯˙(τ)0

Im Herztschen Dipol existiert keine Ausstrahlung ( In der Hertzschen Dipol- Näherung)

Beispiel: geschlossene Leiterschleife ( sogenannte Rahmenantenne):

Mit

I(t)=I0eiωt

2. Ordnung:

A¯(2)(r¯,t)=μ04πr3d3r´(r¯r¯´)(1+rcτ)j¯(r¯´,τ)

Mit

(r¯r¯´)j¯(r¯´,τ)=12(r¯´×j¯)×r¯+12[(r¯r¯´)j¯+(r¯j¯)r¯´]undr´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)+xk´(r¯r¯´)r´j¯]r´j¯=τρ(r¯´,τ)

Kontinuitätsgleichung Dann folgt integriert:

Der zweite Term rechts kann durch den Tensor des elektrischen Quadrupolmoments ausgedrückt werden ( vergl. S. 15, Elektrostatik):

Q¯¯(τ)=d3r´ρ(r¯´,τ)(3r¯´r¯´r´21¯¯)=:Q¯¯~13(tr(Q¯¯~))1¯¯

Falls

Q~(τ) oszilliert ( sogenannter "breathing mode"), gibt

13(tr(Q¯¯~))1¯¯

keinen Beitrag zu

E¯,B¯

  • verschwindet durch Eichtrafo innerhalb der Klasse der Lorentz- Eichungen

-> Q¯¯(τ)r¯=3d3r´ρ(r¯´,τ)r¯´(r¯´r¯)

Also:

A¯(2)(r¯,t)=μ04πr3(1+rcτ)[m¯(τ)×r¯+16Q¯¯˙(τ)r¯]=μ04π(1r3m¯×r¯+1cr2m¯˙×r¯+16r3Q¯¯˙(τ)r¯+16cr2Q¯¯¨(τ)r¯)

Mit der magnetischen Dipolstrahlung

1r3m¯×r¯+1cr2m¯˙×r¯

und elektrischer Quadrupolstrahlung

16r3Q¯¯˙(τ)r¯+16cr2Q¯¯¨(τ)r¯

Die magnetische Dipolstrahlung kann mit Hilfe

×1rm¯(trc)=1r3m¯(trc)×r¯+1cr2m¯˙(trc)×r¯

schreiben als:


Die magnetische Dipolstrahlung

Skalares Potenzial aus der Lorentz- Eichung

tΦ(r¯,t)=c2A¯(r¯,t)=μ0c24π(×1rm¯)0Φ(r¯,t)=Φ(r¯)=!=0

O.B.d.A.: Es existiere kein statisches Potenzial/ es wird auf Null gesetzt

Berechnung der Felder in Fernfeldnäherung:

das elektrische Feld ergibt sich wie für die elektrische Dipolstrahlung

Nebenbemerkung

Für Systeme von Teilchen mit gleicher spezifischer Ladung qm

ist

p¯~R¯ (Schwerpunkt) und

m¯~L¯ ( Gesamtdrehimpuls)

p¯˙=m¯˙=0

In diesem Fall ( vier gleiche Ladungen etc...) ist nur elektrische Quadrupolstrahlung möglich

vergleiche ART: durch die unipolarität der Masse existiert nur Gravitations- Quadrupolstrahlung