Retardierte Potenziale

From testwiki
Revision as of 00:28, 29 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „ <noinclude>{{Scripthinweis|Elektrodynamik|4|2}}</noinclude> <u>'''Aufgabe'''</u> Lösung der inhomogenen Wellengleichungen in Lorentz- Eichung: <math>\begin{al…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search



{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=2}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Aufgabe Lösung der inhomogenen Wellengleichungen in Lorentz- Eichung:

#Φ(r¯,t)=ρε0#A¯(r¯,t)=μ0j¯

zu vorgegebenen erzeugenden Quellen ρ(r¯,t),j¯(r¯,t) und Randbedingungen Φ(r¯,t),A¯(r¯,t)0fu¨rr¯

Methode: Greensche Funktion verwenden:

G(r¯r¯´,tt´)

In der Elektrodynamik:

#u(r¯,t)=f(r¯,t)

mit

u(r¯,t):=Φ(r¯,t),A¯(r¯,t)f(r¯,t)=ρε0,μ0j¯

Fourier- Trafo:

#^1:=G^u^(k¯,ω)=G^f^(k¯,ω)

Rück- Trafo: es folgt schließlich:

u(r¯,t)=R3d3r´dt´G(r¯r¯´,tt´)f(r¯´,t´)

mit

#G(r¯r¯´,tt´)=δ(r¯r¯´)δ(tt´)

Vergleiche: Elektrostatik:

ΔΦ(r¯)=1ε0ρ(r¯)

Fourier- Trafo:

Δ1:=G^Φ^(k¯)=G^ρ^G^=1ε0k2

Rück- Trafo: es folgt schließlich:

Φ(r¯)=R3d3r´G(r¯r¯´)ρ(r¯´)

mit

G(r¯r¯´)=14πε01|r¯r¯´|ΔG(r¯r¯´)=1ε0δ(r¯r¯´)

Kausalitätsbedingung:

G(r¯r¯´,tt´)=0

für t<t´

Somit kann

u(r¯,t) nur von f(r¯´,t´) mit t´ < t beeinflusst werden

Fourier- Transformation:

f(r¯,t)=1(2π)2R3d3qdωf^(q¯,ω)ei(q¯r¯ωt)f^(q¯,ω)=1(2π)2R3d3rdtf(r¯,t)ei(q¯r¯ωt)

Ebenso:

u(r¯,t)=1(2π)2R3d3qdωu^(q¯,ω)ei(q¯r¯ωt)#u(r¯,t)=1(2π)2R3d3qdωu^(q¯,ω)#ei(q¯r¯ωt)#ei(q¯r¯ωt)=(q2ω2c2)ei(q¯r¯ωt)

Aber es gilt:

#u(r¯,t)=1(2π)2R3d3qdωf^(q¯,ω)ei(q¯r¯ωt)(q2ω2c2)u^(q¯,ω)=f^(q¯,ω)u^(q¯,ω)=f^(q¯,ω)(q2ω2c2)G^=1(q2ω2c2)

Rücktransformation:

u(r¯,t)=1(2π)4R3d3qdωei(q¯r¯ωt)(q2ω2c2)R3d3r´dt´f(r¯´,t´)ei(q¯r¯ωt)u(r¯,t)=R3d3r´dt´{1(2π)4R3d3qdωeiq¯(r¯r¯´)iω(tt´)(q2ω2c2)}f(r¯´,t´)1(2π)4R3d3qdωeiq¯(r¯r¯´)iω(tt´)(q2ω2c2)=G(r¯r¯´,tt´)

Dieses Integral hat jedoch 2 Polstellen im Integrationsbereich. Es kann nur durch Anwendung des Residuensatz (komplexe Integration) gelöst werden.

Berechnung der Greens- Funktion durch komplexe Integration

für ω=±cq gibt es Polstellen. Die Greensche Funktion wird eindeutig, indem der Integrationsweg um die Pole herum festgelegt wird:


Der obere Integrationsweg wird durch τ<0 charakterisiert, der untere Integrationsweg durch τ>0 . Dabei: τ=tt´

Das Integral über den Halbkreis:

Oberer Halbkreis: τ<0

ω=Reiϕ0ϕπdω=Reiϕidϕ|eiωτ|=eRsinϕτsinϕ>0τ<0limReRsinϕτ=0

Unterer Halbkreis: τ>0

ω=Reiϕπϕ2πdω=Reiϕidϕ|eiωτ|=eRsinϕτsinϕ<0τ>0limReRsinϕτ=0

Somit verschwinden die Beiträge aus den Kreisbögen und wir können für das problematische Integral schreiben:

Γ(q¯,τ):=dωeiωτ(q2ω2c2)=Cdωeiωτ(q2ω2c2)=2πiPoleseiωτ(q2ω2c2)

( Residuensatz)

Für τ<0 liegen jedoch gar keine Pole im Integrationsgebiet C

Γ(q¯,τ)=0G(r¯r¯´,tt´)=0:=G(s¯,τ)=0

für t<t´

Dies ist die Kausalitätsbedingung.

Für τ>0

Γ(q¯,τ)=2πiω=±cqseiωτ1c2(ωcq)(ω+cq)

Das Minuszeichen kommt daher, dass der Umlauf im mathematisch negativen Sinn erfolgt:

Cdzf(z)=2πiPolesf(z) ,

falls das Ringintegral gegen den Uhrzeigersinn durchlaufen wird. Hier jedoch wird es im Uhrzeigersinn durchlaufen !

Γ(q¯,τ)=2πic2(eicqτ2cq+eicqτ2cq)

G(s¯,τ)=c(2π)3R3d3qeiq¯s¯(eicqτeicqτ2iq)

Die Auswertung der Greensfunktion muss in Kugelkoordinaten erfolgen:

d3q=q2dqsinϑdϑdϕq¯s¯=qscosϑG(s¯,τ)=c(2π)30dqq(eicqτeicqτ2i)11dcosϑeiqscosϑ02πdϕ11dcosϑeiqscosϑ=eiqseiqsiqsξ:=cqG(s¯,τ)=c2(2π)2s0dξ{ei(τsc)ξ+ei(τsc)ξei(τ+sc)ξei(τ+sc)ξ}G(s¯,τ)=c4πs0dξ{δ(τsc)δ(τ+sc)}δ(τ+sc)=0fu¨rτ>0

Also lautet das Ergebnis:

G(r¯r¯´,tt´)={14π|r¯r¯´|δ(tt´|r¯r¯´|c)0t<t´t>t´

Retardierte Greensfunktion (kausal)

Physikalische Interpretation

G(r¯r¯´,tt´) ist das Potenzial Φ(r¯,t) , das von einer punktförmigen Ladungsdichte

ρε0=δ(r¯r¯´)δ(tt´)

am Punkt r¯´ zur Zeit t´ erzeugt wird.

Die Eigenschaften:

Nebenbemerkung:

Für den Integrationsweg

Oberer Halbkreis: τ<0

Unterer Halbkreis: τ>0

erhält man die avancierte Greensfunktion ( =0 für t > t´). Diese beschreibt eigentlich eine einlaufende Kugelwelle, welche sich an r¯´ zur zeit t´ zusammenzieht !

Mit

G(r¯,t)=d3r´tdt´14π|r¯r¯´|δ(tt´|r¯r¯´|c)f(r¯´,t´)=d3r´14π|r¯r¯´|f(r¯´,t|r¯r¯´|c)

folgt dann für die retardierten Potenziale für beliebige Ladungs- und Stromverteilungen

ρ(r¯,t),j¯(r¯,t)

Φ(r¯,t)=14πε0d3r´ρ(r¯´,t|r¯r¯´|c)|r¯r¯´|A¯(r¯,t)=μ´04πd3r´j¯(r¯´,t|r¯r¯´|c)|r¯r¯´|

Die retardierten Potenziale Φ(r¯,t),A¯(r¯,t) sind bestimmt durch r¯´ zu retardierten Zeiten t´=t|r¯r¯´|c . Dies berücksichtigt die endliche Ausbreitungsgeschwindigkeit von elektromagnetischen Wellen mit Lichtgeschwindigkeit c.