Magnetische Multipole

From testwiki
Revision as of 01:16, 29 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> ( stationär) Ausgangspunkt ist <math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=4}} Kategorie:Elektrodynamik __SHOWFACTBOX__


( stationär)

Ausgangspunkt ist A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´| (mit der Coulomb- Eichung A¯(r¯)=0 )

mit den Randbedingungen A¯(r¯)0 für r-> unendlich

Taylorentwicklung nach 1|r¯r¯´| von analog zum elektrischen Fall: Die Stromverteilung j¯(r¯´) sei stationär für r>>r´

1|r¯r¯´|=1r+1r3(r¯r¯´)+...

A¯(r¯)=μ04πrR3d3r´j¯(r¯´)+μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)+...

Monopol- Term

Mit

r´[xk´j¯(r¯´)]=xk´(r´j¯(r¯´))+j¯(r¯´)(r´xk´)

Im stationären Fall folgt aus der Kontinuitätsgleichung:

r´j¯(r¯´)=0

r´[xk´j¯(r¯´)]=j¯(r¯´)(r´xk´)=jlδkl=jk

Mit r´[xk´j¯(r¯´)]=jk folgt dann:

d3r´jk(r¯´)=d3r´r´[xk´j¯(r¯´)]=Sdf¯[xk´j¯(r¯´)]=0

Somit verschwindet der Monopolterm in der Theorie

Dipol- Term

mit

[r¯´×j¯(r¯´)]×r¯=(r¯r¯´)j¯(r¯j¯)r¯´=2(r¯r¯´)j¯[(r¯r¯´)j¯+(r¯j¯)r¯´]

und mit

r´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)+xk´(r¯r¯´)r´j¯]r´j¯=0r´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)]

Folgt:

R3d3r´r´[xk´(r¯r¯´)j¯]=R3d3r´[(r¯r¯´)jk+xk´(r¯j¯)]=0

Da

R3d3r´r´[xk´(r¯r¯´)j¯]=Sdf¯[xk´(r¯r¯´)j¯]=0 weil der Strom verschwindet ! Somit gibt der Term

[(r¯r¯´)j¯+(r¯j¯)r¯´]

keinen Beitrag zum

μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)

Also:

A¯(r¯)=μ04πr312R3d3r´(r¯´×j¯(r¯´))×r¯

Als DIPOLPOTENZIAL !!

A¯(r¯):=μ04πr3m¯×r¯m¯=12R3d3r´(r¯´×j¯(r¯´))

das magnetische Dipolmoment !

Analog zu

Φ(r¯):=14πε0r3p¯r¯p¯:=R3d3r´r¯´ρ(r¯´)

dem elektrischen Dipolmoment

Die magnetische Induktion des Dipolmomentes ergibt sich als:

B¯(r¯):=×μ04πr3m¯×r¯=μ04πr5[3(m¯r¯)r¯r2m¯]

Wegen:

×(a¯×b¯)=(b¯)a¯(a¯)b¯+a¯(b¯)b¯(a¯)

mit

a¯=m¯r3b¯=r¯diva¯=3m¯r¯r5divb¯=3(b¯)a¯=3m¯r2r5(a¯)b¯=m¯r3

Analog ergab sich als elektrisches Dipolfeld:

E¯(r¯):=14πε0r5[3(p¯r¯)r2p¯]

Beispiel: Ebene Leiterschleife L:


df¯´=12r¯´×ds¯´d3r¯´j(r¯´)=ds¯´I

Mit I = Strom durch den Leiter

m¯=12Ld3r´(r¯´×j¯(r¯´))=I2Lr¯´×ds¯´=IFdf¯´=IFn¯

Dabei ist

n¯ die Normale auf der von L eingeschlossenen Fläche F

Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment m¯


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment p¯=qa¯ , welches von der positiven zur negativen Ladung zeigt.

Bewegte Ladungen N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.

Dabei sei die spezifische Ladung

qimi=qm konstant:

ρ(r¯)=iqiδ(r¯r¯i)j¯(r¯)=iqiv¯iδ(r¯r¯i)v¯i=dr¯idt

Das magnetische Dipolmoment beträgt:

m¯=12Ld3r´(r¯´×j¯(r¯´))=12iqid3r´r¯´×v¯iδ(r¯´r¯i)=12iqir¯i×v¯i=12iqimimir¯i×v¯iqimi=qmm¯=q2mL¯

Mit dem Bahndrehimpuls L¯

m¯=q2mL¯ gilt aber auch für starre Körper !

  • Allgemeines Gesetz !

Jedoch gilt dies nicht für den Spin eines Elektrons !!!

m¯=ge2mS¯g2

Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen !

Kraft auf eine Stromverteilung:

j¯(r¯´)=ρi(r¯´)v¯(r¯´)

im Feld einer externen magnetischen Induktion B¯(r¯´)

Spürt die Lorentzkraft

F¯=d3r´j¯(r¯´)×B¯(r¯´)

Talyorentwicklung liefert:

B¯(r¯´)=B¯(r¯)+[(r¯´r¯)]B¯(r¯)+....F¯=[d3r´j¯(r¯´)]×B¯(r¯´)+d3r´j¯(r¯´)×[(r¯´r¯)]B¯(r¯)+...

im stationären Fall gilt wieder:

[d3r´j¯(r¯´)]=0 ( keine Monopole) Also:

F¯=d3r´j¯(r¯´)×[(r¯´)r]B¯(r¯)d3r´j¯(r¯´)×[(r¯)r]B¯(r¯)d3r´j¯(r¯´)×[(r¯)r]B¯(r¯)=0,dad3r´j¯(r¯´)=0F¯=d3r´j¯(r¯´)×[(r¯´)r]B¯(r¯)[(r¯´)r]B¯(r¯)=r[(r¯´)B¯(r¯)]r¯´×[r×B¯(r¯)]

Man fordert:

[r×B¯(r¯)]=0

( Das externe Feld soll keine Stromwirbel im Bereich von j¯(r¯´) haben:

F¯=d3r´j¯(r¯´)×r[(r¯´)B¯(r¯)]j¯(r¯´)×r[(r¯´)B¯(r¯)]=r×[((r¯´)B¯(r¯))j¯(r¯´)]+[(r¯´)B¯(r¯)]r×j¯(r¯´)r×j¯(r¯´)=0F¯=d3r´r×[((r¯´)B¯(r¯))j¯(r¯´)]=r×(m¯×B¯(r¯))F¯=r×(m¯×B¯(r¯))=(m¯r)B¯(r¯)=r(m¯B¯(r¯))

( Vergl. S. 34)