Elektrisches Feld und Potenziale

From testwiki
Revision as of 00:09, 29 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „ <noinclude>{{Scripthinweis|Elektrodynamik|1|2}}</noinclude> Lineare Superposition ( 4. Newtonsches Prinzip) der Kräfte der Ladungen <math>{{q}_{i}}</math> bei…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search



{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=2}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Lineare Superposition ( 4. Newtonsches Prinzip) der Kräfte der Ladungen qi bei r¯i ,i=1,2,... auf die Ladung q bei r¯

F¯e(2)=14πε0iqqi|r¯r¯i|2r¯r¯i|r¯r¯i|

Darüber wird das elektrische Feld definiert:

qE¯F¯e(2)=14πε0iqqi|r¯r¯i|2r¯r¯i|r¯r¯i|

Also:

E¯=14πε0iqi|r¯r¯i|2r¯r¯i|r¯r¯i|

Warum ist die Elektrodynamik eine Feldtheorie ?

  • Die endliche Ausbreitungsgeschwindigkeit von physikalischen Wechselwirkungen ( maximal mit c) ist universell. Das Feld als Medium für die Übertragung physikalischer Wechselwirkungen ersetzt ein Modell des Austauschs im Sinne einer Nahwirkung statt einem Austauschmodell.
  • Das Feld
  • E¯(r¯)
  • ist der PHYSIKALISCHE Zustand des leeren Raumes bei
  • r¯
  • .
  • Eigenständige FELDDYNAMIK ( partielle Diffgl.) zur Beschreibung der endlich schnellen Ausbreitung ( Retardierungseffekte)
  • Feld muss IMPULS, DREHIMPULS und ENERGIE aufnehmen und abgeben können.

Einheit:

[E]=NC=kgmCs2=Vm1V:=1kgm2Cs2

Das Volt ist benannt nach A. Volta ( 1745 - 1887)

Die Messung des elektrischen Feldes erfolgt durch Einbringung einer Probeladung: Dabei sollte q-> 0, damit keine Rückwirkung auf qi erfolgt.

Unter Berücksichtigung des Selbstkonsistenzproblems müsste man also schreiben:

[E¯(r¯)]=limq01qF¯(r¯)

Das Elektrostatische Potenzial Mit 1r´=1r´3r¯´r´:=|r¯r¯i|

Läßt sich schreiben:

E¯(r¯)=14πε0iqi|r¯r¯i|3(r¯r¯i)=Φ(r¯)Φ(r¯):=14πε0iqi|r¯r¯i|

Mit dem elektrostatischen Potenzial Φ(r¯):=14πε0iqi|r¯r¯i| , Einheit : 1 V

Kontinuierliche Ladungsverteilung

qid3r´ρ(r¯´)iqid3r´ρ(r¯´)

Mit der Ladungsdichte ρ(r¯´) . Diese muss beschränkt sein und O(r3ε),ε>0 für r .

Es wird


Bei Verteilung von Punktladungen:

ρ(r¯´)=iqiδ(r¯´r¯i)=iqij=13δ(xj´xji)

Quellen des elektrischen Feldes:

Bei Punktladung q bei r¯´=0E¯(r¯)=14πε0qr2r¯r

Legt man eine geschlossene Oberfläche S um q, so beobachtet man einen elektrischen Kraftfluss:


Φe=Sdf¯E¯(r¯)=q4πε0Sdf¯r¯r3=SdfEn(r¯) als geschl. Flächenintegral über die Normalkomponenten des austretenden elektrischen Feldes

Φe=Sdf|E¯(r¯)|cosΘ


df¯ entspricht einem Raumwinkel dΩ:df¯r¯=dfrcosΘ=r3dΩ

Φe=Sdf¯E¯(r¯)=q4πε0SdΩ=qε0

ε0Sdf¯E¯(r¯)=q

Dies kann leicht auf kontinuierliche Ladungsverteilungen verallgemeinert werden:

ε0Vdf¯E¯(r¯)=Vd3r´ρ(r¯´)

Der Fluß des elektrischen Feldes einer von S=V eingeschlossenen Gesamtladung

Integralform des Coulomb- Gesetzes

Der Gaußsche Integralsatz

Vdf¯E¯(r¯)=Vd3rdivE¯(r¯)=Vd3rE¯(r¯)

wichtig: einfach zusammenhängendes Gebiet !

Vd3rρ(r¯)=ε0Vd3rE¯(r¯)ε0E¯(r¯)=ρ(r¯)

Die untere, differenzielle Form gilt deshalb, da die obere, integral Form für beliebige Volumina V gilt.

ε0E¯(r¯)=ρ(r¯)

sagt jedoch nichts anderes als dass die Ladungen die Quellen des elektrischen Feldes sind. Dies ist allgemeingültig uns gilt insbesondere auch für nichtstationäre E¯(r¯),ρ(r¯)

Äquivalente Aussagen der Elektrostatik

  1. E¯(r¯)
  2. besitzt ein skalares Potenzial
  3. E¯(r¯)=Φ(r¯)
  4. 12ds¯E¯(r¯)
  5. , also gerade die Arbeit, eine Ladung q=1 von 1 nach 2 zu bringen ist wegunabhängig
  6. ×E¯(r¯)=0
  7. : Das statische elektrische Feld ist wirbelfrei

Es gilt:

1)2)3)

Beweis: 1)3) Stokescher Satz:

0=Fds¯E¯(r¯)=F×E¯(r¯)df¯ für beliebige Flächen F mit einer Umrandung F .