Bifurkationen
65px|Kein GFDL | Der Artikel Bifurkationen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 7.Kapitels (Abschnitt 3) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=7|Abschnitt=3}} Kategorie:Mechanik __SHOWFACTBOX__
Sei der Fluß von einem Kntrollparametr µ abhängig, so zeigt sich, dass sich die Zahl der Attraktoren bei einem kritischen Wert µc schlagartig ändern kann.
Es treten dann sogenannte Bifurkationen auf ("Verzweigungen" der Lösungsmannigfaltigkeit).
Notwendige Voraussetzung für diesen Prozess ist jedoch Nichtlinearität!
Bifurkationspunkte sind oft verknüpft mit Stabilitätswechsel. Das bedeutet, die lineare Stabilität der Fixpunkte im Falle lokaler Bifurkationen muss untersucht werden.
Klassifizierung einfachster Bifurkationen:
Eigenwert- Null - Bifurkation
stabiler Fixpunkt (Knoten) → instabilen Fixpunkt (Sattelpunkt für
detA>0 → detA<0
A1) Sattel- Knoten- Bifurkation
einfachster Fall:
Fixpunkte existieren also nur für
Somit existieren:
für
A2) Transkritische Bifurkation
Stabilitätswechsel bei µc=0
Your article was excellent and eirdute.